• Wang, S., He, J., Ma, R., Cheng, Z. & Ding, H. A Comprehensive Vector Dataset of Bus Networks Across China for the Year 2024. Sci Data 12, 524 (2025).


    Google Scholar
     

  • Papagiannaki, K. et al. Developing a large-scale dataset of flood fatalities for territories in the Euro-Mediterranean region, FFEM-DB. Sci Data 9, 166 (2022).


    Google Scholar
     

  • Aerts, J. C. J. H. et al. Integrating human behaviour dynamics into flood disaster risk assessment. Nature Clim Change 8, 193–199 (2018).


    Google Scholar
     

  • Rentschler, J., Salhab, M. & Jafino, B. A. Flood exposure and poverty in 188 countries. Nat Commun 13, 3527 (2022).


    Google Scholar
     

  • Rogers, J. S., Maneta, M. P., Sain, S. R., Madaus, L. E. & Hacker, J. P. The role of climate and population change in global flood exposure and vulnerability. Nat Commun 16, 1287 (2025).


    Google Scholar
     

  • Guo, X. et al. The extraordinary Zhengzhou flood of 7/20, 2021: How extreme weather and human response compounding to the disaster. Cities 134, 104168 (2023).


    Google Scholar
     

  • Strauss, B. H. et al. Economic damages from Hurricane Sandy attributable to sea level rise caused by anthropogenic climate change. Nat Commun 12, 2720 (2021).


    Google Scholar
     

  • Lehmkuhl, F. et al. Assessment of the 2021 summer flood in Central Europe. Environ Sci Eur 34, 107 (2022).


    Google Scholar
     

  • Kimutai, J. et al. Climate Change and High Exposure Increased Costs and Disruption to Lives and Livelihoods from Flooding Associated with Exceptionally Heavy Rainfall in Central Europe. http://hdl.handle.net/10044/1/114694, https://doi.org/10.25561/114694 (2024).

  • Wang, W., Yang, S., Stanley, H. E. & Gao, J. Local floods induce large-scale abrupt failures of road networks. Nat Commun 10, 2114 (2019).


    Google Scholar
     

  • Lin, X., Lu, Q., Chen, L. & Brilakis, I. Assessing dynamic congestion risks of flood-disrupted transportation network systems through time-variant topological analysis and traffic demand dynamics. Advanced Engineering Informatics 62, 102672 (2024).


    Google Scholar
     

  • Banik, S. & Vanajakshi, L. Impact of Rainfall on Traffic Mobility and Reliability Under Indian Traffic Conditions. Transp. in Dev. Econ. 10, 29 (2024).


    Google Scholar
     

  • Gao, W., Hu, X. & Wang, N. Resilience analysis in road traffic systems to rainfall events: Road environment perspective. Transportation Research Part D: Transport and Environment 126, 104000 (2024).


    Google Scholar
     

  • Jagadish, H. V. et al. Big data and its technical challenges. Commun. ACM 57, 86–94 (2014).


    Google Scholar
     

  • Li, Y., Yu, R., Shahabi, C. & Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. in (2018).

  • Liang, Y. et al. BasicTS: An Open Source Fair Multivariate Time Series Prediction Benchmark. in Benchmarking, Measuring, and Optimizing (eds. Gainaru, A., Zhang, C. & Luo, C.) 87–101, https://doi.org/10.1007/978-3-031-31180-2_6 (Springer International Publishing, Cham, 2023).

  • Loder, A., Ambühl, L., Menendez, M. & Axhausen, K. W. UTD19: Understanding traffic capacity of urban networks. Institute for Transport Planning and Systems, ETH Zurich, https://doi.org/10.3929/ethz-b-000437802 (2020).

  • Thorndahl, S. et al. Weather radar rainfall data in urban hydrology. Hydrology and Earth System Sciences 21, 1359–1380 (2016).


    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999–2049 (2020).


    Google Scholar
     

  • Li, B. et al. High-resolution multi-source traffic data in New Zealand. Sci Data 11, 1216 (2024).


    Google Scholar
     

  • OpenStreetMap Contributor. Open Street Map. Planet dump retrieved from https://www.openstreetmap.org/ (2017).

  • Biçici, S. & Zeybek, M. Improvements on Road Centerline Extraction by Combining Voronoi Diagram and Intensity Feature from 3D UAV-Based Point Cloud. in Innovations in Smart Cities Applications Volume 5 (eds. Ben Ahmed, M., Boudhir, A. A., KaraÈ™, İ. R., Jain, V. & Mellouli, S.) 935–944, https://doi.org/10.1007/978-3-030-94191-8_76 (Springer International Publishing, Cham, 2022).

  • Saalfeld, A. Topologically Consistent Line Simplification with the Douglas-Peucker Algorithm. Cartography and Geographic Information Science 26, 7–18 (1999).


    Google Scholar
     

  • Lin, X. & Lu, Q. IUTF Dataset(Enhanced): Enabling Cross-Border Resource for Analysing the Impact of Rainfall on Urban Transportation Systems, https://doi.org/10.6084/m9.figshare.30022807.v1 (2025).

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci Data 5, 170191 (2018).


    Google Scholar
     

  • Met Office. UK and regional series. Met Office https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-and-regional-series (2023).



  • Source link