• Westermann, W. L. The development of the irrigation system of Egypt. Class. Philol. 14, 158–164, https://doi.org/10.1086/360222 (1919).


    Google Scholar
     

  • Nienhuis, J. H., Cox, J. R., O’Dell, J., Edmonds, D. A. & Scussolini, P. A global open-source database of flood-protection levees on river deltas (openDELvE). Nat. Hazards Earth Syst. Sci. 22(12), 1–16, https://doi.org/10.5194/nhess-2021-291 (2021).


    Google Scholar
     

  • National Levee Database (NLD) US Army Corps of Engineers, https://levees.sec.usace.army.mil/#/ (2025).

  • Rijkswaterstaat Ministry of Infrastructure and Wate Management Data https://data.overheid.nl/datasets?facet_theme%5B0%5D=http%3A//standaarden.overheid.nl/owms/terms/Ruimte_en_infrastructuur (2025).

  • Barbetta, S., Camici, S., Maccioni, P. & Moramarco, T. National Levee Database: monitoring, vulnerability assessment and management in Italy. Proc. EGU General Assembly, Vienna, Austria, 12–17 (2015).

  • UK Environment Management Agency https://www.data.gov.uk/search?q=flood+defence+&filters%5Bpublisher%5D=&filters%5Btopic%5D=Environment&filters%5Bformat%5D=&sort=best

  • Wallace, T. Crawford-Flett, K., Wilson, M. & Logan, T. A framework for modelling the probability of flooding under levee breaching. Journal of Flood Risk Management. 17(3), https://doi.org/10.1111/jfr3.12988 (2024).

  • Tobin, G. A. The levee love affair: a stormy relationship? 1. JAWRA Journal of the American Water Resources Association 31(3), 359–367 (1995).


    Google Scholar
     

  • Heine, R. A. & Pinter, N. Levee effects upon flood levels: an empirical assessment. Hydrological Processes 26(21), 3225–3240 (2012).


    Google Scholar
     

  • Ding, M. et al. Reversal of the levee effect towards sustainable floodplain management. Nature Sustainability 6(12), 1578–1586 (2023).


    Google Scholar
     

  • Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Climatic Change. 134, 387–401 (2016).


    Google Scholar
     

  • Hirabayashi et al. Global flood risk under climate change. Nature climate change. 3, 816–821 (2013).


    Google Scholar
     

  • Alfieri et al. Global projections of river flood risk in a warmer world. Earth’s Future. 5(2), https://doi.org/10.1002/2016EF000485 (2016).

  • Tourment et al. European and US Levees and Flood Defences Characteristics, Risks and Governance. EUCOLD Work Group on Levees and Flood Defences. (2018).

  • Hui, R., Jachens, E. & Lund, J. Risk-based planning analysis for a single levee. Water Resour. Res. 52, 2513–2528, https://doi.org/10.1002/2014WR016478 (2016).


    Google Scholar
     

  • U.S. Army Corps of Engineers Levee Portfolio Report. (U.S. Army Corps of Engineers, 2018).

  • American Society of Civil Engineers. 2021 Report Card for America’s Infrastructure. (ASCE, 2021).

  • Lehmkuhl, F. et al. Assessment of the 2021 summer flood in Central Europe. Environmental Sciences Europe. 34(107) (2022).

  • Domeneghetti, A., Vaccari, M., Bertolini, I. & Marchi, M. Testing empirical criteria for breach geometry estimation to recent embankment failure datasets. Proc., 5th Meeting of the European Working Group on Overflow and Overtopping Erosion. (2024).

  • Özer, I. E., van Damme, M. & Jonkman, N. Towards an international levee performance database (ILPD) and its use for macro-scale analysis of levee breaches and failures. Water. 12(1), 119 (2020).


    Google Scholar
     

  • Zomorodi, K. Empirical Equations for Levee Breach Parameters Based on Reliable International Data. Journal of Dam Safety. 21(2), 20–45 (2024).


    Google Scholar
     

  • Bowman, A. J. et al. Centrifuge modelling of embankment overtopping. Proc. 5th European Conference on Physical Modelling in Geotechnics. 1–7 (2024).

  • Briaud, J. L., Shafii, I., Chen, H. C. & Medina-Cetina, Z. Relationship between erodibility and properties of soils. NCHRP Report 915. Transportation Research Board, National Academies of Sciences, Engineering, and Medicine (2019).

  • Kakinuma, T. & Shimizu, Y. Large-scale experiment and numerical modelling of a riverine levee breach. Journal of Hydraulic Engineering. 140(9), 1–9 (2014).


    Google Scholar
     

  • Hanson, G. J., Temple, D. M., Hunt, S. L. & Tejral, R. Development and Characterization of Soil Material Parameters for Embankment Breach. Applied Engineering in Agriculture 27(4), 587–595 (2011).


    Google Scholar
     

  • Wu, W. Introduction to DLBreach – A Simplified Physically-Based Dam/Levee Breach Model. Version 2016.4. Clarkson University Technical Report (2016).

  • van Damme, M. An analytical process-based approach to predicting breach width in levees constructed from dilatant soils. Natural Hazards 101(1), 59–85 (2020).


    Google Scholar
     

  • Zhong, Q. M., Chen, S. S., Deng, Z. & Mei, S. A. Prediction of overtopping-induced breach process of cohesive dams. Journal of Geotechnical and Geoenvironmental Engineering. 145(5), 1–12 (2019).


    Google Scholar
     

  • Danka, J. & Zhang, L. M. Dike Failure Mechanisms and Breaching Parameters. Journal of Geotechincal and Geoenvironmental Engineering. 141(9). (2015).

  • Sills, G. L., Vroman, N. D., Wahl, R. E. & Schwanz, N. T. Overview of New Orleans Levee Failures: Lessons Learned and Their Impact on National Levee Design and Assessment. Journal of Geotechnical and Geoenvironmental Engineering. 135(5), 556–565 (2008).


    Google Scholar
     

  • Seed, R. B., Athanasopoulos-Zekkos, A., Cobos-Roa, D., Pestana, J. M. & Inamine, M. U.S. Levee and Flood Protection Engineering in the Wake of Hurricane Katrina. Proc. GeoCongress 2012. 1, 294–334 (2012).


    Google Scholar
     

  • U.S. Army Corps of Engineers Rock Island District. Levee Safety Program. https://www.mvr.usace.army.mil/missions/flood-risk-management/levee-safety-program/#:~:text=In%202006%2C%20the%20U.S.%20Army,the%20public%2C%20property%20and%20environment (2025).

  • Water Resources Development Act of 2007, Pub. L. No. 110–114, 121 Stat. 1041 (2007).

  • US Army Corps of Engineers. Levee Screening Tool Application Guide and Technical Reference Manual Version 3.8 (2015).

  • Flynn, S. G., Vahedifard, F. & Schaaf, D. M. A dataset of levee overtopping incidents. Proc., Geo-Extreme 2021: Infrastructure Resilience, Big Data, and Risk, 99–108. (2021).

  • O’Leary, T. M. & Schaaf, D. M. USACE Levee Overtopping Incidents and Failures. Proc. 5th Meeting of the European Working Group on Overflow and Overtopping Erosion. (2024).

  • Flynn, S., Zamanian, S., Vahedifard, F., Shafieezadeh, A. & Schaaf, D. Data-Driven Model for Estimating the Probability of Riverine Levee Breach Due to Overtopping. Journal of Geotechnical and Geoenvironmental Engineering. 148(3), 1–13 (2022).


    Google Scholar
     

  • U.S. Army Corps of Engineers. RiverGages.com: Water control and river conditions. USACE. https://rivergages.mvr.usace.army.mil/WaterControl/new/layout.cfm (Accessed April 1, 2025).

  • U.S. Geological Survey. National Water Information System: Real-time water data. USGS. https://waterdata.usgs.gov/nwis/rt (Accessed April 2, 2025).

  • National Oceanic and Atmospheric Administration. NOAA Water. NOAA https://water.noaa.gov/ (Accessed March 31, 2025).

  • Levee Safety Tool 2.0. US Army Corps of Engineers, https://lst2.sec.usace.army.mil/ (April 20, 2025).

  • Waterways Experiment Station (USACE). The Unified Soil Classification System. Technical Memorandum No. 3-357. (U.S. Army Corps of Engineers, 1953).

  • Flynn, S., Bowman, A. & Vahedifard, V. Quantitative Assessment of Levee Breach Widening and Time-Rate Volume Loss Using Historical Overtopping Events. Proc. GeoExtreme 2025, ASCE (2025).

  • Hanson, G. J., Robinson, K. M. & Cook, K. R. Prediction of headcut migration using a deterministic approach. Trans. ASAE 44, 525–531 (2001).


    Google Scholar
     

  • Flynn, S., Vahedifard, F. & Schaaf, D. LLID-OT v1.0. figshare. Dataset. https://doi.org/10.6084/m9.figshare.29932181 (2025).

  • Robbins, B. A. & Corcoran, M. K. Calculation of levee-breach widening rates. ERDC/GSL TR-22-8, U.S. Army Engineer Research and Development Center, (2022).

  • Hunt, S. L., Hanson, G. J., Cook, K. R. & Kadavy, K. C. Breach widening observations from earthen embankment tests. Trans. ASAE 48(3), 1115–1120 (2005).


    Google Scholar
     

  • Visser, J. P. Breach growth in sand-dikes. PhD thesis, Delft University of Technology, Netherlands (1998).

  • van Damme, M. Detachment of dilatant soil due to high hydraulic shear stresses explained. Journal of Hydraulic Research. 59(1), 51–60 (2021).


    Google Scholar
     



  • Source link