Zhang, G. et al. Behavior of prestressed concrete box bridge girders under hydrocarbon fire condition. Proc. Eng. 210, 449–455 (2017).
Robertson, L., et al., Post-fire investigations of prestressed concrete structures. Response of structures under extreme loading (PROTECT 2015) (2015).
Zhang, W., Liu, D. & Cao, K. Prediction of concrete compressive strength using support vector machine regression and non-destructive testing. Case Stud. Constr. Mater 21, e03416 (2024).
Bentz, D. P. & Snyder, K. A. Protected paste volume in concrete—Extension to internal curing using saturated lightweight fine aggregate. Cem. Concr. Res. 29(11), 1863–1867 (1999).
Bruce, S., et al. Deterioration of prestressed concrete bridge beams. Land Transport New Zealand Wellington, New Zealand (2008).
Imperatore, S. et al. Corrosion effects on the flexural performance of prestressed reinforced concrete beams. Constr. Build. Mater. 411, 134581 (2024).
Alqam, M., Alkhairi, F. & Naaman, A. An improved methodology for the prediction of the stress at ultimate in unbonded internal and external steel tendons. Arab. J. Sci. Eng. 45, 7915–7954 (2020).
Dall’Asta, A., Ragni, L. & Zona, A. Simplified method for failure analysis of concrete beams prestressed with external tendons. J. Struct. Eng. 133(1), 121–131 (2007).
Pfeiffer, O. P. et al. Bayesian design of concrete with amortized Gaussian processes and multi-objective optimization. Cem. Concr. Res. 177, 107406 (2024).
Xue, J., Shao, J. F. & Burlion, N. Estimation of constituent properties of concrete materials with an artificial neural network based method. Cem. Concr. Res. 150, 106614 (2021).
Oyebisi, S. & Alomayri, T. Artificial intelligence-based prediction of strengths of slag-ash-based geopolymer concrete using deep neural networks. Constr. Build. Mater. 400, 132606 (2023).
Ekanayake, I., Meddage, D. & Rathnayake, U. A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP). Case Stud. Constr. Mater. 16, e01059 (2022).
Nunez, I. & Nehdi, M. L. Machine learning prediction of carbonation depth in recycled aggregate concrete incorporating SCMs. Constr. Build. Mater. 287, 123027 (2021).
Keshtegar, B. et al. Hybrid regression and machine learning model for predicting ultimate condition of FRP-confined concrete. Compos. Struct. 262, 113644 (2021).
Khan, M. A. et al. Geopolymer concrete compressive strength via artificial neural network, adaptive neuro fuzzy interface system, and gene expression programming with K-fold cross validation. Front. Mater. 8, 621163 (2021).
Yaseen, Z. M. et al. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv. Eng. Softw. 115, 112–125 (2018).
Feng, D.-C. et al. Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements. Eng. Struct. 235, 111979 (2021).
Wang, X. Y., Ma, X. R. & Chen, S. Z. Uncertainty-aware fuzzy knowledge embedding method for generalized structural performance prediction. Comput. Aid. Civ. Infrast. Eng. 40(17), 2546–2560 (2025).
Malhotra, K., Mishra, D. & Tumrate, C. S. Prediction of concrete compressive strength employing machine learning techniques. Mater. Today: Proc. https://doi.org/10.1016/j.matpr.2023.05.717 (2023).
Zhang, C. et al. Compressive strength and sensitivity analysis of fly ash composite foam concrete: Efficient machine learning approach. Adv. Eng. Softw. 192, 103634 (2024).
Zeng, S. et al. Prediction of compressive strength of FRP-confined concrete using machine learning: A novel synthetic data driven framework. J. Build. Eng. 94, 109918 (2024).
Adankon, M. M. & Cheriet, M. Model selection for the LS-SVM Application to handwriting recognition. Pattern Recogn. 42(12), 3264–3270 (2009).
Bengio, Y. Gradient-based optimization of hyperparameters. Neural Comput. 12(8), 1889–1900 (2000).
Tran, N. et al. Hyper-parameter optimization in classification: To-do or not-to-do. Pattern Recogn. 103, 107245 (2020).
Jiang, X. et al. Cascaded subpatch networks for effective CNNs. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 2684–2694 (2017).
Larochelle, H., et al. An empirical evaluation of deep architectures on problems with many factors of variation. in Proceedings of the 24th International Conference on Machine learning. (2007).
Mockus, J. On Bayesian methods for seeking the extremum. in Proceedings of the IFIP Technical Conference. (1974).
Kusumaputri, F. H., Arifin, A. S. & IEEE. Anomaly detection based on NSL-KDD using XGBoost with Optuna tuning. in 7th International Conference on Business and Industrial Research (ICBIR). Electr Network (2022).
Li, Y. et al. Optuna-DFNN: An Optuna framework driven deep fuzzy neural network for predicting sintering performance in big data. Alex. Eng. J. 97, 100–113 (2024).
Akiba, T., et al. Optuna: A Next-generation Hyperparameter Optimization Framework. in 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD). Anchorage, AK (2019).
Arrieta, A. B. et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fus. 58, 82–115 (2020).
Von Eschenbach, W. J. Transparency and the black box problem: Why we do not trust AI. Philos. Technol. 34(4), 1607–1622 (2021).
Belle, V. & Papantonis, I. Principles and practice of explainable machine learning. Front. Big Data 4, 688969 (2021).
De, T. et al. Explainable AI: A hybrid approach to generate human-interpretable explanation for deep learning prediction. Proc. Comput. Sci. 168, 40–48 (2020).
Roscher, R. et al. Explainable machine learning for scientific insights and discoveries. IEEE Access 8, 42200–42216 (2020).
Shah, S. F. A. et al. Compressive strength prediction of one-part alkali activated material enabled by interpretable machine learning. Constr. Build. Mater. 360, 129534 (2022).
Srinivas, P. & Katarya, R. hyOPTXg: OPTUNA hyper-parameter optimization framework for predicting cardiovascular disease using XGBoost. Biomed. Signal Process. Control 73, 103456 (2022).
Fu, B. et al. Quantifying scattering characteristics of mangrove species from Optuna-based optimal machine learning classification using multi-scale feature selection and SAR image time series. Int. J. Appl. Earth Obs. Geoinf. 122, 103446 (2023).
Morales Rodríguez, D., Pegalajar Cuellar, M., & Morales, D. P. On the fusion of soft-decision-trees and concept-based models. Available at SSRN 4402768 (2023).
Wang, Y., Zhang, J., & Zhang. L. Theory of decision tree models in classification problems. In International Conference on Statistics, Applied Mathematics, and Computing Science (CSAMCS 2021). SPIE (2022).
Souza, V. F. et al. Decision trees with short explainable rules. Adv. Neural. Inf. Process. Syst. 35, 12365–12379 (2022).
Audemard, G., et al., On the explanatory power of decision trees. Preprint at arXiv:2108.05266 (2021).
Quinlan, J. R. C4.5: Programs for Machine Learning (Elsevier, 2014).
Nie, B., et al. Improved algorithm of C4. 5 decision tree on the arithmetic average optimal selection classification attribute. in 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE (2017).
Gupta, P., Jindal, A., & Sengupta, D. Guided Random Forest and its application to data approximation. Preprint at arXiv:1909.00659 (2019).
Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 13(1), 1063–1095 (2012).
Chen, T., & Guestrin. C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016).
Mitchell, R., et al. Xgboost: Scalable GPU accelerated learning. Preprint at arXiv:1806.11248 (2018).
Jia, H., Qiao, G. & Han, P. Machine learning algorithms in the environmental corrosion evaluation of reinforced concrete structures—A review. Cement Concr. Compos. 133, 104725 (2022).
Akiba, T., et al. Optuna: A next-generation hyperparameter optimization framework. in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019).
Liu, D., Database for prestressed concrete beam flexural behavior test. Mendeley Data. V1. (2023)
Muhammad, B. R., Sarsam, K. F. & Jaber, H. T. Size effect on the shear strength of reinforced concrete beams. Eng. Technol. J. 39(12), 1960 (2021).
Li, Y. et al. Experimental study on the correlation between crack width and crack depth of RC beams. Materials 14(20), 5950 (2021).
Hu, X. et al. Experimental study on crack width of HRB600 grade high-strength steel bar reinforced concrete beams. Buildings 14(1), 10 (2023).
Goszczyńska, B., Trąmpczyński, W. & Tworzewska, J. Analysis of crack width development in reinforced concrete beams. Materials 14(11), 3043 (2021).
Sun, H. Q. & Ding, J. Research on influences of the coarse aggregate size on the cracks of the reinforced beam. Adv. Mater. Res. 503, 832–836 (2012).
Zhou, Z. et al. Probabilistic rutting model using NGBoost and SHAP: Incorporating other performance indicators. Constr. Build. Mater. 438, 137052 (2024).