• Lv, L., Guo, P., Liu, G., Han, N. & Xing, F. Light induced self-healing in concrete using novel cementitious capsules containing UV curable adhesive. Cem. Concr. Compos. 105, 103445 (2020).


    Google Scholar
     

  • Yang, D. F., Xu, G. B., Duan, Y. & Dong, S. Self-healing cement composites based on bleaching earth immobilized bacteria. J. Clean. Prod. 358, 132045 (2022).


    Google Scholar
     

  • Achal, V., Mukerjee, A. & Reddy, M. S. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr. Build. Mater. 48, 1–5 (2013).


    Google Scholar
     

  • Kan, Y.-C., Lee, M.-G. & Lee, H.-W. Experimental investigation of mode-I fracture toughness of real-cracked concrete repaired by epoxy. Constr. Build. Mater. 293, 123490 (2021).


    Google Scholar
     

  • Wang, Z. et al. Experimental research on variable-amplitude fatigue behavior of cracked mortar after epoxy grouting. Constr. Build. Mater. 304, 124600 (2021).


    Google Scholar
     

  • Zhang, W., Zheng, Q., Ashour, A. & Han, B. Self-healing cement concrete composites for resilient infrastructures: A review. Compos. B-Eng. 189, 107892 (2020).


    Google Scholar
     

  • Li, Z. et al. Biomineralization process of CaCO3 Precipitation Induced by Bacillus mucilaginous and its potential application in microbial self-healing concrete. Appl. Biochem. Biotechnol. 196, 1896–1920 (2024).


    Google Scholar
     

  • Zhang, L., Zheng, M., Zhao, D. & Feng, Y. A review of novel self-healing concrete technologies. J. Build. Eng. 89, 109331 (2024).


    Google Scholar
     

  • Khan, M. B. E., Dias-da-Costa, D. & Shen, L. Factors affecting the self-healing performance of bacteria-based cementitious composites: A review. Constr. Build. Mater. 384, 131271 (2023).


    Google Scholar
     

  • Wong, L. S. Microbial cementation of ureolytic bacteria from the genus Bacillus: a review of the bacterial application on cement-based materials for cleaner production. J. Clean. Prod. 93, 5–17 (2015).


    Google Scholar
     

  • Wang, J. Y., Soens, H., Verstraete, W. & De Belie, N. Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res. 56, 139–152 (2014).


    Google Scholar
     

  • Tziviloglou, E., Wiktor, V., Jonkers, H. M. & Schlangen, E. Bacteria-based self-healing concrete to increase liquid tightness of cracks. Constr. Build. Mater. 122, 118–125 (2016).


    Google Scholar
     

  • Ahmad, I., Shokouhian, M., Jenkins, M. & McLemore, G. L. Factors influencing bacterial-based precipitation, assessment of crack inducing, durability and characterization methods: a comprehensive review. Innov. Infrastruct. Solut. 10, 107 (2025).


    Google Scholar
     

  • Cappellesso, V. G., Van Mullem, T., Gruyaert, E., Van Tittelboom, K. & Belie, N. D. Bacteria-based self-healing concrete exposed to frost salt scaling. Cem. Concr. Compos. 139, 105016 (2023).


    Google Scholar
     

  • Amjad, H., Zeb, M. S., Khushnood, R. A. & Khan, N. Impacts of biomimetic self-healing of Lysinibacillus boronitolerans immobilized through recycled fine and coarse brick aggregates in concrete. J. Build. Eng. 76, 107327 (2023).


    Google Scholar
     

  • Zhan, Q., Zhang, X., Zhao, H. & Su, Y. A full-depth self-healing strategy for cracks in cement-based materials under marine environment. Constr. Build. Mater. 449, 138295 (2024).


    Google Scholar
     

  • Wiktor, V. & Jonkers, H. M. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem. Concr. Compos. 33, 763–770 (2011).


    Google Scholar
     

  • Zhang, J. et al. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr. Build. Mater. 148, 610–617 (2017).


    Google Scholar
     

  • Zhang, X. et al. Self-healing properties and improvement methods of mortar cracks in marine corrosive environments. J. Build. Eng. 78, 107676 (2023).


    Google Scholar
     

  • Wang, J., Jonkers, H. M., Boon, N. & De Belie, N. Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Appl. Microbiol. Biotechnol. 101, 5101–5114 (2017).


    Google Scholar
     

  • Ersan, Y. C., Hernandez-Sanabria, E., Boon, N. & de Belie, N. Enhanced crack closure performance of microbial mortar through nitrate reduction. Cem. Concr. Compos. 70, 159–170 (2016).


    Google Scholar
     

  • Qian, C., Chen, H., Ren, L. & Luo, M. Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism. Front. Microbiol. 6, 1225 (2015).


    Google Scholar
     

  • Fu, C. et al. Self-healing properties of cement-based materials in different matrix based on microbial mineralization coupled with bimetallic hydroxide. Constr. Build. Mater. 400, 132686 (2023).


    Google Scholar
     

  • Wiener, N. The homogeneous chaos. Am. J. Math. 60, 897–936 (1938).


    Google Scholar
     

  • Choi, S. K., Grandhi, R. V. & Canfield, R. A. Structural reliability under non-Gaussian stochastic behavior. Comput. Struct. 82, 1113–1121 (2004).


    Google Scholar
     

  • Choi, S.-K., Canfield, R. A. & Grandhi, R. V. Estimation of structural reliability for Gaussian random fields. Struct. Infrastruct. Eng. 2, 161–173 (2006).


    Google Scholar
     

  • Ghanem, R. & Spanos, P. D. Polynomial chaos in stochastic finite-elements. J. Appl. Mech.-Trans. Asme 57, 197–202 (1990).


    Google Scholar
     

  • Ghanem, R. Ingredients for a general purpose stochastic finite elements implementation. Comput. Methods Appl. Mech. Eng. 168, 19–34 (1999).


    Google Scholar
     

  • Marzouk, Y. M. & Najm, H. N. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J. Comput. Phys. 228, 1862–1902 (2009).


    Google Scholar
     

  • Ghanem, R. G. & Doostan, A. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data. J. Comput. Phys. 217, 63–81 (2006).


    Google Scholar
     

  • Das, S., Ghanem, R. & Spall, J. C. Asymptotic sampling distribution for polynomial chaos representation from data: a maximum entropy and Fisher information approach. Siam J. Sci. Comput. 30, 2207–2234 (2008).


    Google Scholar
     

  • Ghanem, R. G., Doostan, A. & Red-Horse, J. A probabilistic construction of model validation. Comput. Methods Appl. Mech. Eng. 197, 2585–2595 (2008).


    Google Scholar
     

  • Mahdavi, G. & Hariri-Ardebili, M. A. Kriging, polynomial chaos expansion, and low-rank approximations in material science and big data analytics. Big Data 12, 270–281 (2024).


    Google Scholar
     

  • He, J., Gao, R. & Tang, Z. A data-driven multi-scale constitutive model of concrete material based on polynomial chaos expansion and stochastic damage model. Constr. Build. Mater. 334, 127441 (2022).


    Google Scholar
     

  • Kim, Y. J., Micnhimer, D. & Park, H.-G. Sparse grid modeling of carbon fiber-reinforced polymer-strengthened pilotis under biaxial load. Acids. Struct. J. 118, 19–32 (2021).


    Google Scholar
     

  • Fu, C., Zhan, Q., Wang, A., Zhou, J. & Pan, Z. Study on improving the activity of mineralized microorganisms by regulating the chemical environment of marine concrete crack area with inorganic minerals. Constr. Build. Mater. 344, 128173 (2022).


    Google Scholar
     

  • Askey, R. & Wilson, J. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54, 1–55 (1985).


    Google Scholar
     

  • Blatman, G. & Sudret, B. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab. Eng. Mech. 25, 183–197 (2010).


    Google Scholar
     

  • Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008).


    Google Scholar
     

  • Hu, H. T. et al. A novel protective cementitious material based on bimetallic hydroxide-modified microbial mineralization: Design, preparation, protective performance, mechanism, and engineering application. Constr. Build. Mater. 445, 137966 (2024).


    Google Scholar
     



  • Source link