Lv, L., Guo, P., Liu, G., Han, N. & Xing, F. Light induced self-healing in concrete using novel cementitious capsules containing UV curable adhesive. Cem. Concr. Compos. 105, 103445 (2020).
Yang, D. F., Xu, G. B., Duan, Y. & Dong, S. Self-healing cement composites based on bleaching earth immobilized bacteria. J. Clean. Prod. 358, 132045 (2022).
Achal, V., Mukerjee, A. & Reddy, M. S. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr. Build. Mater. 48, 1–5 (2013).
Kan, Y.-C., Lee, M.-G. & Lee, H.-W. Experimental investigation of mode-I fracture toughness of real-cracked concrete repaired by epoxy. Constr. Build. Mater. 293, 123490 (2021).
Wang, Z. et al. Experimental research on variable-amplitude fatigue behavior of cracked mortar after epoxy grouting. Constr. Build. Mater. 304, 124600 (2021).
Zhang, W., Zheng, Q., Ashour, A. & Han, B. Self-healing cement concrete composites for resilient infrastructures: A review. Compos. B-Eng. 189, 107892 (2020).
Li, Z. et al. Biomineralization process of CaCO3 Precipitation Induced by Bacillus mucilaginous and its potential application in microbial self-healing concrete. Appl. Biochem. Biotechnol. 196, 1896–1920 (2024).
Zhang, L., Zheng, M., Zhao, D. & Feng, Y. A review of novel self-healing concrete technologies. J. Build. Eng. 89, 109331 (2024).
Khan, M. B. E., Dias-da-Costa, D. & Shen, L. Factors affecting the self-healing performance of bacteria-based cementitious composites: A review. Constr. Build. Mater. 384, 131271 (2023).
Wong, L. S. Microbial cementation of ureolytic bacteria from the genus Bacillus: a review of the bacterial application on cement-based materials for cleaner production. J. Clean. Prod. 93, 5–17 (2015).
Wang, J. Y., Soens, H., Verstraete, W. & De Belie, N. Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res. 56, 139–152 (2014).
Tziviloglou, E., Wiktor, V., Jonkers, H. M. & Schlangen, E. Bacteria-based self-healing concrete to increase liquid tightness of cracks. Constr. Build. Mater. 122, 118–125 (2016).
Ahmad, I., Shokouhian, M., Jenkins, M. & McLemore, G. L. Factors influencing bacterial-based precipitation, assessment of crack inducing, durability and characterization methods: a comprehensive review. Innov. Infrastruct. Solut. 10, 107 (2025).
Cappellesso, V. G., Van Mullem, T., Gruyaert, E., Van Tittelboom, K. & Belie, N. D. Bacteria-based self-healing concrete exposed to frost salt scaling. Cem. Concr. Compos. 139, 105016 (2023).
Amjad, H., Zeb, M. S., Khushnood, R. A. & Khan, N. Impacts of biomimetic self-healing of Lysinibacillus boronitolerans immobilized through recycled fine and coarse brick aggregates in concrete. J. Build. Eng. 76, 107327 (2023).
Zhan, Q., Zhang, X., Zhao, H. & Su, Y. A full-depth self-healing strategy for cracks in cement-based materials under marine environment. Constr. Build. Mater. 449, 138295 (2024).
Wiktor, V. & Jonkers, H. M. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem. Concr. Compos. 33, 763–770 (2011).
Zhang, J. et al. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr. Build. Mater. 148, 610–617 (2017).
Zhang, X. et al. Self-healing properties and improvement methods of mortar cracks in marine corrosive environments. J. Build. Eng. 78, 107676 (2023).
Wang, J., Jonkers, H. M., Boon, N. & De Belie, N. Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Appl. Microbiol. Biotechnol. 101, 5101–5114 (2017).
Ersan, Y. C., Hernandez-Sanabria, E., Boon, N. & de Belie, N. Enhanced crack closure performance of microbial mortar through nitrate reduction. Cem. Concr. Compos. 70, 159–170 (2016).
Qian, C., Chen, H., Ren, L. & Luo, M. Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism. Front. Microbiol. 6, 1225 (2015).
Fu, C. et al. Self-healing properties of cement-based materials in different matrix based on microbial mineralization coupled with bimetallic hydroxide. Constr. Build. Mater. 400, 132686 (2023).
Wiener, N. The homogeneous chaos. Am. J. Math. 60, 897–936 (1938).
Choi, S. K., Grandhi, R. V. & Canfield, R. A. Structural reliability under non-Gaussian stochastic behavior. Comput. Struct. 82, 1113–1121 (2004).
Choi, S.-K., Canfield, R. A. & Grandhi, R. V. Estimation of structural reliability for Gaussian random fields. Struct. Infrastruct. Eng. 2, 161–173 (2006).
Ghanem, R. & Spanos, P. D. Polynomial chaos in stochastic finite-elements. J. Appl. Mech.-Trans. Asme 57, 197–202 (1990).
Ghanem, R. Ingredients for a general purpose stochastic finite elements implementation. Comput. Methods Appl. Mech. Eng. 168, 19–34 (1999).
Marzouk, Y. M. & Najm, H. N. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J. Comput. Phys. 228, 1862–1902 (2009).
Ghanem, R. G. & Doostan, A. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data. J. Comput. Phys. 217, 63–81 (2006).
Das, S., Ghanem, R. & Spall, J. C. Asymptotic sampling distribution for polynomial chaos representation from data: a maximum entropy and Fisher information approach. Siam J. Sci. Comput. 30, 2207–2234 (2008).
Ghanem, R. G., Doostan, A. & Red-Horse, J. A probabilistic construction of model validation. Comput. Methods Appl. Mech. Eng. 197, 2585–2595 (2008).
Mahdavi, G. & Hariri-Ardebili, M. A. Kriging, polynomial chaos expansion, and low-rank approximations in material science and big data analytics. Big Data 12, 270–281 (2024).
He, J., Gao, R. & Tang, Z. A data-driven multi-scale constitutive model of concrete material based on polynomial chaos expansion and stochastic damage model. Constr. Build. Mater. 334, 127441 (2022).
Kim, Y. J., Micnhimer, D. & Park, H.-G. Sparse grid modeling of carbon fiber-reinforced polymer-strengthened pilotis under biaxial load. Acids. Struct. J. 118, 19–32 (2021).
Fu, C., Zhan, Q., Wang, A., Zhou, J. & Pan, Z. Study on improving the activity of mineralized microorganisms by regulating the chemical environment of marine concrete crack area with inorganic minerals. Constr. Build. Mater. 344, 128173 (2022).
Askey, R. & Wilson, J. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54, 1–55 (1985).
Blatman, G. & Sudret, B. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab. Eng. Mech. 25, 183–197 (2010).
Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008).
Hu, H. T. et al. A novel protective cementitious material based on bimetallic hydroxide-modified microbial mineralization: Design, preparation, protective performance, mechanism, and engineering application. Constr. Build. Mater. 445, 137966 (2024).