• Forsberg, R. & Björnstig, U. One hundred years of railway disasters and recent trends. Prehosp. Disaster Med. 26, 367–373 (2011).


    Google Scholar
     

  • Liu, X., Saat, M. R. & Barkan, C. P. Analysis of causes of major train derailment and their effect on accident rates. Transp. Res. Rec. 2289, 154–163 (2012).


    Google Scholar
     

  • Tracy, A. & Reznik, T. Broken rails are leading cause of train derailments. Sci Am (2015).

  • Chenariyan Nakhaee, M., Hiemstra, D., Stoelinga, M. & Noort, M. v. The recent applications of machine learning in rail track maintenance: A survey. In International Conference on Reliability, Safety, and Security of Railway Systems. Springer (2019).

  • Gharehbaghi, V. R. et al. A novel approach for deterioration and damage identification in Building structures based on Stockwell-Transform and deep convolutional neural network. J. Struct. Integr. Mainten. 7, 136–150 (2022).


    Google Scholar
     

  • Moomen, M. & Siddiqui, C. Probabilistic deterioration modeling of Bridge component condition with random effects. J. Struct. Integr. Mainten. 7, 151–160 (2022).


    Google Scholar
     

  • Eljufout, T., Abu Shaqra, M., Jamous, Q., Salameh, R. & Jamous, Z. Structural assessment of the historic ten arches Bridge in Jordan. J. Struct. Integr. Mainten. 7, 168–176 (2022).


    Google Scholar
     

  • Colombani, I. A. & Andrawes, B. A study of multi-target image-based displacement measurement approach for field testing of bridges. J. Struct. Integr. Mainten. 7, 207–216 (2022).


    Google Scholar
     

  • Sharma, S., Dangi, S. K., Bairwa, S. K. & Sen, S. Comparative study on sensitivity of acceleration and strain responses for Bridge health monitoring. J. Struct. Integr. Mainten. 7, 238–251 (2022).


    Google Scholar
     

  • Jeon, G., Kim, S., Ahn, S., Kim, H. & Yoon, H. Vision-based automatic cable displacement measurement using Cable‐ROI net and Uni‐KLT. Struct. Control Health Monit. 29, e2977 (2022).


    Google Scholar
     

  • Lee, Y., Lee, G., Moon, D. S. & Yoon, H. Vision-based displacement measurement using a camera mounted on a structure with stationary background targets outside the structure. Struct. Control Health Monit. 29, e3095 (2022).


    Google Scholar
     

  • Bhange, P. et al. Real-Time fatigue crack growth rate Estimation methodology for structural health monitoring of ships. IEEE Sens. J. 22, 19729–19738 (2022).


    Google Scholar
     

  • Cao, X., Sheng, J., Jiang, C., Yuan, D. & Zhang, H. Concrete dam deformation prediction model considering the time delay of monitoring variables. Sci. Rep. 15, 8458 (2025).


    Google Scholar
     

  • Jia, X. et al. A structural health monitoring data reconstruction method based on VMD and SSA-optimized GRU model. Sci. Rep. 15, 3513 (2025).


    Google Scholar
     

  • Moreh, F., Hasan, Y., Rizvi, Z. H., Tomforde, S. & Wuttke, F. Hybrid neural network method for damage localization in structural health monitoring. Sci. Rep. 15, 7991 (2025).


    Google Scholar
     

  • Marino, F., Distante, A., Mazzeo, P. L. & Stella, E. A real-time visual inspection system for railway maintenance: Automatic hexagonal-headed bolts detection. IEEE Trans. Syst. Man. Cybern. Part. C (Appl. Rev.). 37, 418–428 (2007).


    Google Scholar
     

  • Hodge, V. J., O’Keefe, S. & Weeks, M. Moulds. Wireless sensor networks for condition monitoring in the railway industry: A survey. IEEE Trans. Intell. Transp. Syst. 16, 1088–1106 (2015).


    Google Scholar
     

  • Mukojima, H. et al. Moving camera background-subtraction for obstacle detection on railway tracks. In IEEE international conference on image processing (ICIP), IEEE, 2016). (2016).

  • Flammini, F., Pragliola, C. & Smarra, G. Railway infrastructure monitoring by drones (– 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), (2016).

  • Núñez, A., Hendriks, J., Li, Z., De Schutter, B. & Dollevoet, R. Facilitating maintenance decisions on the Dutch railways using big data: The ABA case study. In IEEE international conference on big data (big data), IEEE, 2014). (2014).

  • Jamshidi, A. et al. A big data analysis approach for rail failure risk assessment. Risk Anal. 37, 1495–1507 (2017).


    Google Scholar
     

  • Santur, Y., Karaköse, M. & Akin, E. A new rail inspection method based on deep learning using laser cameras. In International Artificial Intelligence and Data Processing Symposium (IDAP), IEEE, 2017. (2017).

  • Lee, J. S., Park, J. & Ryu, Y. Semantic segmentation of Bridge components based on hierarchical point cloud model. Autom. Constr. 130, 103847 (2021).


    Google Scholar
     

  • Ghiasi, R., Khan, M. A., Sorrentino, D., Diaine, C. & Malekjafarian, A. An unsupervised anomaly detection framework for onboard monitoring of railway track geometrical defects using one-class support vector machine. Eng. Appl. Artif. Intell. 133, 108167 (2024).


    Google Scholar
     

  • Ni, X., Fieguth, P. W., Ma, Z., Shi, B. & Liu, H. Defect detection on multi-type rail surfaces via IoU decoupling and multi-information alignment. Adv. Eng. Inform. 62, 102717 (2024).


    Google Scholar
     

  • Bensalah, M., Elouadi, A. & Mharzi, H. Overview: The opportunity of BIM in railway. Smart Sustain. Built Environment (2019).

  • Neves, J., Sampaio, Z. & Vilela, M. A case study of BIM implementation in rail track rehabilitation. Infrastructures 4, 8 (2019).


    Google Scholar
     

  • Sresakoolchai, J. & Kaewunruen, S. Railway infrastructure maintenance efficiency improvement using deep reinforcement learning integrated with digital twin based on track geometry and component defects. Sci. Rep. 13, 2439 (2023).


    Google Scholar
     

  • Maturana, D. & Scherer, S. Voxnet: A 3d convolutional neural network for real-time object recognition. In IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, 2015. (2015).

  • Wu, B., Wan, A., Yue, X. & Keutzer, K. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud. In IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2018. (2018).

  • Wu, B., Zhou, X., Zhao, S., Yue, X. & Keutzer, K. Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In International Conference on Robotics and Automation (ICRA), IEEE, 2019. (2019).

  • Qi, C. R., Su, H., Mo, K. & Guibas, L. J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (2017).

  • Qi, C. R., Yi, L., Su, H., Guibas, L. J. & Pointnet Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inform. Process. Syst. 30 (2017).

  • Torr, P. H., Zisserman, A. & MLESAC A new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78, 138–156 (2000).


    Google Scholar
     

  • Fischler, M. A. & Bolles, R. C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM. 24, 381–395 (1981).


    Google Scholar
     

  • Duda, R. O. & Hart, P. E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM. 15, 11–15 (1972).


    Google Scholar
     

  • Arthur, D. & Vassilvitskii, S. k-means: The advantages of careful seeding. (2006).



  • Source link