• DfT. National evaluation of e-scooter trials : Findings report. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1128454/national-evaluation-of-e-scooter-trials-findings-report.pdf (2022).

  • Ataç, S., Obrenovi, N. & Bierlaire, M. Vehicle sharing systems : A review and a holistic management framework. EURO J. Transp. Logist. 10, 100033 (2021).

    Article 

    Google Scholar
     

  • Oeschger, G., Carroll, P. & Caulfield, B. Micromobility and public transport integration: The current state of knowledge. Transp. Res. Part D Transp. Environ. 89, 102628 (2020).

    Article 

    Google Scholar
     

  • Eccarius, T. & Lu, C.-C. Adoption intentions for micro-mobility—Insights from electric scooter sharing in Taiwan. Transp. Res. Part D Transp. Environ. 84, 102327 (2020).

    Article 

    Google Scholar
     

  • Gössling, S. Integrating e-scooters in urban transportation: Problems, policies, and the prospect of system change. Transp. Res. Part D Transp. Environ. 79, 102230 (2020).

    Article 

    Google Scholar
     

  • Sherriff, A., Blazejewski, L. & Lomas, M. E-scooters in Greater Manchester. http://usir.salford.ac.uk/id/eprint/65154/ (2022).

  • Beale, K., Kapatsila, B. & Grisé, E. Integrating public transit and shared micromobility payments to improve transportation equity in seattle. WA. Transp. Res. Rec. 2677, 968–980 (2023).

    Article 

    Google Scholar
     

  • Ma, Q. et al. E-Scooter safety: The riding risk analysis based on mobile sensing data. Accid. Anal. Prev. 151, 105954 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mangold, M., Zhao, P., Haitao, H. & Mansourian, A. Geo-fence planning for dockless bike-sharing systems: A GIS-based multi-criteria decision analysis framework. Urban Inf. 17, 1–15 (2022).


    Google Scholar
     

  • Schellong, D., Sadek, P., Schaetzberger, C. & Barrack, T. The Promise and Pitfalls of E-Scooter Sharing. Boston Consulting Group http://boston-consulting-group-brightspot.s3.amazonaws.com/img-src/BCG-The-Promise-and-Pitfalls-of-E-ScooterSharing-May-2019_tcm9-220107.pdf (2019).

  • Tuncer, S., Laurier, E., Brown, B. & Licoppe, C. Notes on the practices and appearances of e-scooter users in public space. J. Transp. Geogr. 85, 102702 (2020).

    Article 

    Google Scholar
     

  • Ville de Paris. Fin des trottinettes en libre-service à Paris le 31 août 2023. https://www.paris.fr/pages/pour-ou-contre-les-trottinettes-en-libre-service-23231 (2023).

  • Blanco, A. Los patinetes de alquiler desaparecerán de las calles de Madrid a partir de octubre. https://www.elmundo.es/madrid/2024/09/05/66d988d0e4d4d8381b8b459e.html (2024).

  • City of Melbourne. E-scooters. https://www.melbourne.vic.gov.au/e-scooters (2024).

  • Li, A., Zhao, P., Haitao, H., Mansourian, A. & Axhausen, K. W. How did micro-mobility change in response to COVID-19 pandemic? A case study based on spatial-temporal-semantic analytics. Comput. Environ. Urban Syst. 90, 101703 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reck, D. J., Haitao, H., Guidon, S. & Axhausen, K. W. Explaining shared micromobility usage, competition and mode choice by modelling empirical data from Zurich, Switzerland. Transp. Res. Part C Emerg. Technol. 124, 102947 (2021).

    Article 

    Google Scholar
     

  • Schumann, H.-H., Haitao, H. & Quddus, M. Passively generated big data for micro-mobility: State-of-the-art and future research directions. Transp. Res. Part D 121, 103795 (2023).

    Article 

    Google Scholar
     

  • Zhao, P., Haitao, H., Li, A. & Mansourian, A. Impact of data processing on deriving micro-mobility patterns from vehicle availability data. Transp. Res. Part D Transp. Environ. 97, 102913 (2021).

    Article 

    Google Scholar
     

  • Mohamed, A. A. & van der Laag Yamu, C. Space syntax has come of age: A Bibliometric Review from 1976 to 2023. J. Plan. Lit. https://doi.org/10.1177/08854122231208018 (2023).

    Article 

    Google Scholar
     

  • Hillier, B. & Hanson, J. The Social Logic of Space (Cambridge University Press, 1984). https://doi.org/10.1017/CBO9780511597237.

    Book 

    Google Scholar
     

  • Turner, A. From axial to road-centre lines: A new representation for space syntax and a new model of route choice for transport network analysis. Environ. Plan. B Plan. Des. 34, 539–555 (2007).

    Article 

    Google Scholar
     

  • Karimi, K. A configurational approach to analytical urban design: Space syntax methodology. Urban Des. Int. 17, 297–318 (2012).

    Article 

    Google Scholar
     

  • Netto, V. M. ‘What is space syntax not?’ Reflections on space syntax as sociospatial theory. Urban Des. Int. 21, 25–40 (2016).

    Article 

    Google Scholar
     

  • Kamelnia, H., Hanachi, P. & Moayedi, M. Exploring the spatial structure of Toon historical town courtyard houses: Topological characteristics of the courtyard based on a configuration approach. J. Cult. Herit. Manag. Sustain. Dev. 14, 981–997 (2022).

    Article 

    Google Scholar
     

  • Vaughan, L. The relationship between physical segregation and social marginalisation in the urban environment. World Archit. 185, 88–96 (2005).


    Google Scholar
     

  • Summers, L. & Johnson, S. D. Does the configuration of the street network influence where outdoor serious violence takes place? Using space syntax to test crime pattern theory. J. Quant. Criminol. 33, 397–420 (2017).

    Article 

    Google Scholar
     

  • Omer, I. & Goldblatt, R. Spatial patterns of retail activity and street network structure in new and traditional Israeli cities. Urban Geogr. 37, 629–649 (2016).

    Article 

    Google Scholar
     

  • Hillier, B., Penn, A., Hanson, J., Grajewski, T. & Xu, J. Natural movement: Or, configuration and attraction in urban pedestrian movement. Environ. Plan. B Plan. Des. 20, 29–66 (1993).

    Article 

    Google Scholar
     

  • Cohen, A. & Dalyot, S. Machine-learning prediction models for pedestrian traffic flow levels: Towards optimizing walking routes for blind pedestrians. Trans. GIS 24, 1264–1279 (2020).

    Article 

    Google Scholar
     

  • Raford, N., Chiaradia, A. & Gil, J. Space syntax: The role of urban form in cyclist route choice in central London. UC Berkeley Res. Reports https://doi.org/10.11436/mssj.15.250 (2007).

    Article 

    Google Scholar
     

  • Shatu, F., Yigitcanlar, T. & Bunker, J. Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour. J. Transp. Geogr. 74, 37–52 (2019).

    Article 

    Google Scholar
     

  • Jayasinghe, A., Sano, K., Abenayake, C. C. & Mahanama, P. K. S. A novel approach to model traffic on road segments of large-scale urban road networks. MethodsX 6, 1147–1163 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Omer, I. & Kaplan, N. Using space syntax and agent-based approaches for modeling pedestrian volume at the urban scale. Comput. Environ. Urban Syst. 64, 57–67 (2017).

    Article 

    Google Scholar
     

  • Natapov, A. & Fisher-Gewirtzman, D. Visibility of urban activities and pedestrian routes: An experiment in a virtual environment. Comput. Environ. Urban Syst. 58, 60–70 (2016).

    Article 

    Google Scholar
     

  • Law, S., Sakr, F. L. & Martinez, M. Measuring the changes in aggregate cycling patterns between 2003 and 2012 from a space syntax perspective. Behav. Sci. (Basel) 4, 278–300 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • McCahill, C. & Garrick, N. W. The applicability of space syntax to bicycle facility planning. Transp. Res. Rec. 2074, 46–51. https://doi.org/10.3141/2074-06 (2008).

    Article 

    Google Scholar
     

  • Patterson, J. L. Traffic modelling in cities—Validation of space syntax at an urban scale. Indoor Built. Environ. 25, 1163–1178 (2016).

    Article 

    Google Scholar
     

  • Yamu, C., van Nes, A. & Garau, C. Bill Hillier’s legacy: Space syntax—a synopsis of basic concepts, measures, and empirical application. Sustainability 13, 3394 (2021).

    Article 

    Google Scholar
     

  • McNally, M. G. The four-step model. In Handbook of Transport Modelling (eds Hensher, D. A. & Button, K. J.) 35–53 (Emerald Group Publishing Limited, 2008).


    Google Scholar
     

  • Tzouras, P. G. et al. Agent-based models for simulating e-scooter sharing services: A review and a qualitative assessment. Int. J. Transp. Sci. Technol. 12, 71–85. https://doi.org/10.1016/j.ijtst.2022.02.001 (2023).

    Article 

    Google Scholar
     

  • Raveau, S., Guo, Z., Carlos, J. & Wilson, N. H. M. A behavioural comparison of route choice on metro networks: Time, transfers, crowding, topology and socio-demographics. Transp. Res. Part A Policy Pract. 66, 185–195 (2014).

    Article 

    Google Scholar
     

  • Prato, C. G. et al. Evaluation of land-use and transport network effects on cyclists ’ route choices in the Copenhagen Region in value-of-distance space. Int. J. Sustain. Transp. 12, 770 (2018).

    Article 

    Google Scholar
     

  • Li, S., Muresan, M. & Fu, L. Cycling in Toronto, Ontario, Canada: Route choice behavior and implications for infrastructure planning. Transp. Res. Rec. 2662, 41–49. https://doi.org/10.3141/2662-05 (2017).

    Article 

    Google Scholar
     

  • Di, X. & Liu, H. X. Boundedly rational route choice behavior: A review of models and methodologies. Transp. Res. Part B Methodol. 85, 142–179 (2016).

    Article 

    Google Scholar
     

  • Bovy, P. H. L. On modelling route choice sets in transportation networks: A synthesis. Transp. Rev. 29, 43–68 (2009).

    Article 

    Google Scholar
     

  • Ramaekers, K., Reumers, S., Wets, G. & Cools, M. Modelling route choice decisions of car travellers using combined GPS and diary data. Networks Spat. Econ. 13, 351–372 (2013).

    Article 
    MathSciNet 

    Google Scholar
     

  • Hess, S., Quddus, M., Rieser-Schüssler, N. & Daly, A. Developing advanced route choice models for heavy goods vehicles using GPS data. Transp. Res. Part E Logist. Transp. Rev. 77, 29–44 (2015).

    Article 

    Google Scholar
     

  • Tribby, C. P., Miller, H. J., Brown, B. B., Werner, C. M. & Smith, K. R. Analyzing walking route choice through built environments using random forests and discrete choice techniques. Environ. Plan. B Urban Anal. City Sci. 44, 1145–1167 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson Sargoni, O. & Manley, E. Neighbourhood-level pedestrian navigation using the construal level theory. Environ. Plan. B Urban Anal. City Sci. 50, 2151–2170 (2023).

    Article 

    Google Scholar
     

  • Montello, D. R., Davis, R. C., Johnson, M. & Chrastil, E. R. The symmetry and asymmetry of pedestrian route choice. J. Environ. Psychol. 87, 102004 (2023).

    Article 

    Google Scholar
     

  • Meister, A., Felder, M., Schmid, B. & Axhausen, K. W. Route choice modeling for cyclists on urban networks. Transp. Res. Part A Policy Pract. 173, 103723 (2023).

    Article 

    Google Scholar
     

  • Ton, D., Duives, D., Cats, O. & Hoogendoorn, S. Evaluating a data-driven approach for choice set identification using GPS bicycle route choice data from Amsterdam. Travel Behav. Soc. 13, 105–117 (2018).

    Article 

    Google Scholar
     

  • Meena, S. & Geethanjali, K. N. A survey on shortest path routing algorithms for public transport travel. Glob. J. Comput. Sci. Technol. 9, 73–76 (2010).


    Google Scholar
     

  • Brands, T., De Romph, E., Veitch, T. & Cook, J. Modelling public transport route choice, with multiple access and egress modes. In Transportation Research Procedia Vol. 1 12–23 (Elsevier, 2014).


    Google Scholar
     

  • Ringhand, M., Schackmann, D., Anke, J., Porojkow, I. & Petzoldt, T. Differences in route choice behavior when riding shared e-scooters vs . bicycles – A field study. J. Safety Res. (2024) https://doi.org/10.1016/j.jsr.2024.04.008.

  • Zhang, W., Buehler, R., Broaddus, A. & Sweeney, T. What type of infrastructures do e-scooter riders prefer? A route choice model. Transp. Res. Part D Transp. Environ. 94, 102761 (2021).

    Article 

    Google Scholar
     

  • Hsueh, C. & Lin, J. J. Influential factors of the route choices of scooter riders: A GPS-based data study. J. Transp. Geogr. 113, 103719 (2023).

    Article 

    Google Scholar
     

  • Cubells, J., Miralles-Guasch, C. & Marquet, O. E-scooter and bike-share route choice and detours: Modelling the influence of built environment and sociodemographic factors. J. Transp. Geogr. 111, 103664 (2023).

    Article 

    Google Scholar
     

  • Menghini, G., Carrasco, N., Schüssler, N. & Axhausen, K. W. Route choice of cyclists in Zurich. Transp. Res. Part A Policy Pract. 44, 754–765 (2010).

    Article 

    Google Scholar
     

  • Meister, A., Gupta, I. & Axhausen, K. W. Descriptive route choice analysis of cyclists in Zurich. In 21st Swiss Transport Research Conference (STRC 2021), Ascona, Switzerland (STRC, 2021). https://doi.org/10.3929/ethz-b-000504160.

  • Charlton, B., Sall, E., Schwartz, M. & Hood, J. Bicycle route choice data collection using GPS-enabled smartphones. TRB 2011 Annu. Meet. 1–10 (2011).

  • Hood, J., Sall, E. & Charlton, B. A GPS-based bicycle route choice model for San Francisco. California. Transp. Lett. 3, 63–75 (2011).

    Article 

    Google Scholar
     

  • Broach, J., Dill, J. & Gliebe, J. Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transp. Res. Part A Policy Pract. 46, 1730–1740 (2012).

    Article 

    Google Scholar
     

  • Sievert, K., Roen, M., Craig, C. M. & Morris, N. L. A survey of electric-scooter riders’ route choice, safety perception, and helmet use. Sustainability 15, 6609 (2023).

    Article 

    Google Scholar
     

  • Sevtsuk, A. & Basu, R. The role of turns in pedestrian route choice: A clarification. J. Transp. Geogr. 102, 103392 (2022).

    Article 

    Google Scholar
     

  • Hillier, B., Yang, T. & Turner, A. Normalising least angle choice in Depthmap—and how it opens up new perspectives on the global and local analysis of city space. J. Sp. Syntax 3, 155–193 (2012).


    Google Scholar
     

  • Koohsari, M. J. et al. Street network measures and adults’ walking for transport: Application of space syntax. Heal. Place 38, 89–95 (2016).

    Article 

    Google Scholar
     

  • Lerman, Y., Rofè, Y. & Omer, I. Using space syntax to model pedestrian movement in urban transportation planning. Geogr. Anal. 46, 392–410 (2014).

    Article 

    Google Scholar
     

  • van Nes, A. & Yamu, C. Introduction to Space Syntax in Urban Studies (Springer, 2021).


    Google Scholar
     

  • Berghauser Pont, M., Stavroulaki, G. & Marcus, L. Development of urban types based on network centrality, built density and their impact on pedestrian movement. Environ. Plan. B Urban Anal. City Sci. 46, 1549–1564 (2019).

    Article 

    Google Scholar
     

  • Sharmin, S. & Kamruzzaman, M. Meta-analysis of the relationships between space syntax measures and pedestrian movement. Transp. Rev. 38, 524–550 (2018).

    Article 

    Google Scholar
     

  • Jiang, B. & Jia, T. Agent-based simulation of human movement shaped by the underlying street structure. Int. J. Geogr. Inf. Sci. 25, 51–64 (2011).

    Article 

    Google Scholar
     

  • Meister, A., Liang, Z., Felder, M. & Axhausen, K. W. Comparative study of route choice models for cyclists. J. Cycl. Micromobility Res. 2, 100018 (2024).

    Article 

    Google Scholar
     

  • Feng, C., Jiao, J. & Wang, H. Estimating E-scooter traffic flow using big data to support planning for micromobility. J. Urban Technol. 29, 139–157 (2022).

    Article 

    Google Scholar
     

  • Huber, S. & Friedrich, F. E-scooter route choice in Germany—Using stated preference data to investigate e-scooter route choice preferences. Transp. Res. Arena 72, 3877–3884 (2023).


    Google Scholar
     

  • Nikiforiadis, A. et al. Analysis of attitudes and engagement of shared e-scooter users. Transp. Res. Part D Transp. Environ. 94, 102790 (2021).

    Article 

    Google Scholar
     

  • Elvik, R. The non-linearity of risk and the promotion of environmentally sustainable transport. Accid. Anal. Prev. 41, 849–855 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Stadt Mannheim. E-Scooter. https://www.mannheim.de/de/service-bieten/verkehr/e-scooter (2024).

  • OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org. https://www.openstreetmap.org/ (2023).

  • Turner, A., Penn, A. & Hillier, B. An algorithmic definition of the axial map. Environ. Plan. B Plan. Des. 32, 425–444 (2005).

    Article 

    Google Scholar
     

  • Serra, M. & Hillier, B. Angular and metric distance in road network analysis: A nationwide correlation study. Comput. Environ. Urban Syst. 74, 194–207 (2019).

    Article 

    Google Scholar
     

  • Ståhle, A. et al. Place Syntax Tool. (2021).

  • Hillier, B. & Iida, S. Network and psychological effects in urban movement. in Proceedings of Spatial Information Theory: International Conference, COSIT 2005,Ellicottsville, N.Y., U.S.A.,September 14-18, 2005 (eds. Cohn, A. G. & Mark, D. M.) (Springer-Verlag, 2005). https://doi.org/10.1007/11556114_30.

  • Gil, J. Street network analysis “edge effects”: Examining the sensitivity of centrality measures to boundary conditions. Environ. Plan. B Urban Anal. City Sci. 44, 819–836 (2017).

    Article 

    Google Scholar
     

  • Bohannon, R. W. & Andrews, A. W. Normal walking speed: A descriptive meta-analysis. Physiotherapy 97, 182–189 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wannes, M. & Verbeke, M. HMM with Non-emitting states for map matching. in European Conference on Data Analysis (ECDA) (2018).

  • Flötteröd, G. & Bierlaire, M. Metropolis-hastings sampling of paths. Transp. Res. Part B Methodol. 48, 53–66 (2013).

    Article 

    Google Scholar
     

  • Prato, C. G. Route choice modeling: Past, present and future research directions. J. Choice Model. 2, 65–100 (2009).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bierlaire, M. A short introduction to Biogeme. Technical report TRANSP-OR 230620. (2023).



  • Source link