DfT. National evaluation of e-scooter trials : Findings report. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1128454/national-evaluation-of-e-scooter-trials-findings-report.pdf (2022).
Ataç, S., Obrenovi, N. & Bierlaire, M. Vehicle sharing systems : A review and a holistic management framework. EURO J. Transp. Logist. 10, 100033 (2021).
Oeschger, G., Carroll, P. & Caulfield, B. Micromobility and public transport integration: The current state of knowledge. Transp. Res. Part D Transp. Environ. 89, 102628 (2020).
Eccarius, T. & Lu, C.-C. Adoption intentions for micro-mobility—Insights from electric scooter sharing in Taiwan. Transp. Res. Part D Transp. Environ. 84, 102327 (2020).
Gössling, S. Integrating e-scooters in urban transportation: Problems, policies, and the prospect of system change. Transp. Res. Part D Transp. Environ. 79, 102230 (2020).
Sherriff, A., Blazejewski, L. & Lomas, M. E-scooters in Greater Manchester. http://usir.salford.ac.uk/id/eprint/65154/ (2022).
Beale, K., Kapatsila, B. & Grisé, E. Integrating public transit and shared micromobility payments to improve transportation equity in seattle. WA. Transp. Res. Rec. 2677, 968–980 (2023).
Ma, Q. et al. E-Scooter safety: The riding risk analysis based on mobile sensing data. Accid. Anal. Prev. 151, 105954 (2021).
Mangold, M., Zhao, P., Haitao, H. & Mansourian, A. Geo-fence planning for dockless bike-sharing systems: A GIS-based multi-criteria decision analysis framework. Urban Inf. 17, 1–15 (2022).
Schellong, D., Sadek, P., Schaetzberger, C. & Barrack, T. The Promise and Pitfalls of E-Scooter Sharing. Boston Consulting Group http://boston-consulting-group-brightspot.s3.amazonaws.com/img-src/BCG-The-Promise-and-Pitfalls-of-E-ScooterSharing-May-2019_tcm9-220107.pdf (2019).
Tuncer, S., Laurier, E., Brown, B. & Licoppe, C. Notes on the practices and appearances of e-scooter users in public space. J. Transp. Geogr. 85, 102702 (2020).
Ville de Paris. Fin des trottinettes en libre-service à Paris le 31 août 2023. https://www.paris.fr/pages/pour-ou-contre-les-trottinettes-en-libre-service-23231 (2023).
Blanco, A. Los patinetes de alquiler desaparecerán de las calles de Madrid a partir de octubre. https://www.elmundo.es/madrid/2024/09/05/66d988d0e4d4d8381b8b459e.html (2024).
City of Melbourne. E-scooters. https://www.melbourne.vic.gov.au/e-scooters (2024).
Li, A., Zhao, P., Haitao, H., Mansourian, A. & Axhausen, K. W. How did micro-mobility change in response to COVID-19 pandemic? A case study based on spatial-temporal-semantic analytics. Comput. Environ. Urban Syst. 90, 101703 (2021).
Reck, D. J., Haitao, H., Guidon, S. & Axhausen, K. W. Explaining shared micromobility usage, competition and mode choice by modelling empirical data from Zurich, Switzerland. Transp. Res. Part C Emerg. Technol. 124, 102947 (2021).
Schumann, H.-H., Haitao, H. & Quddus, M. Passively generated big data for micro-mobility: State-of-the-art and future research directions. Transp. Res. Part D 121, 103795 (2023).
Zhao, P., Haitao, H., Li, A. & Mansourian, A. Impact of data processing on deriving micro-mobility patterns from vehicle availability data. Transp. Res. Part D Transp. Environ. 97, 102913 (2021).
Mohamed, A. A. & van der Laag Yamu, C. Space syntax has come of age: A Bibliometric Review from 1976 to 2023. J. Plan. Lit. https://doi.org/10.1177/08854122231208018 (2023).
Hillier, B. & Hanson, J. The Social Logic of Space (Cambridge University Press, 1984). https://doi.org/10.1017/CBO9780511597237.
Turner, A. From axial to road-centre lines: A new representation for space syntax and a new model of route choice for transport network analysis. Environ. Plan. B Plan. Des. 34, 539–555 (2007).
Karimi, K. A configurational approach to analytical urban design: Space syntax methodology. Urban Des. Int. 17, 297–318 (2012).
Netto, V. M. ‘What is space syntax not?’ Reflections on space syntax as sociospatial theory. Urban Des. Int. 21, 25–40 (2016).
Kamelnia, H., Hanachi, P. & Moayedi, M. Exploring the spatial structure of Toon historical town courtyard houses: Topological characteristics of the courtyard based on a configuration approach. J. Cult. Herit. Manag. Sustain. Dev. 14, 981–997 (2022).
Vaughan, L. The relationship between physical segregation and social marginalisation in the urban environment. World Archit. 185, 88–96 (2005).
Summers, L. & Johnson, S. D. Does the configuration of the street network influence where outdoor serious violence takes place? Using space syntax to test crime pattern theory. J. Quant. Criminol. 33, 397–420 (2017).
Omer, I. & Goldblatt, R. Spatial patterns of retail activity and street network structure in new and traditional Israeli cities. Urban Geogr. 37, 629–649 (2016).
Hillier, B., Penn, A., Hanson, J., Grajewski, T. & Xu, J. Natural movement: Or, configuration and attraction in urban pedestrian movement. Environ. Plan. B Plan. Des. 20, 29–66 (1993).
Cohen, A. & Dalyot, S. Machine-learning prediction models for pedestrian traffic flow levels: Towards optimizing walking routes for blind pedestrians. Trans. GIS 24, 1264–1279 (2020).
Raford, N., Chiaradia, A. & Gil, J. Space syntax: The role of urban form in cyclist route choice in central London. UC Berkeley Res. Reports https://doi.org/10.11436/mssj.15.250 (2007).
Shatu, F., Yigitcanlar, T. & Bunker, J. Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour. J. Transp. Geogr. 74, 37–52 (2019).
Jayasinghe, A., Sano, K., Abenayake, C. C. & Mahanama, P. K. S. A novel approach to model traffic on road segments of large-scale urban road networks. MethodsX 6, 1147–1163 (2019).
Omer, I. & Kaplan, N. Using space syntax and agent-based approaches for modeling pedestrian volume at the urban scale. Comput. Environ. Urban Syst. 64, 57–67 (2017).
Natapov, A. & Fisher-Gewirtzman, D. Visibility of urban activities and pedestrian routes: An experiment in a virtual environment. Comput. Environ. Urban Syst. 58, 60–70 (2016).
Law, S., Sakr, F. L. & Martinez, M. Measuring the changes in aggregate cycling patterns between 2003 and 2012 from a space syntax perspective. Behav. Sci. (Basel) 4, 278–300 (2014).
McCahill, C. & Garrick, N. W. The applicability of space syntax to bicycle facility planning. Transp. Res. Rec. 2074, 46–51. https://doi.org/10.3141/2074-06 (2008).
Patterson, J. L. Traffic modelling in cities—Validation of space syntax at an urban scale. Indoor Built. Environ. 25, 1163–1178 (2016).
Yamu, C., van Nes, A. & Garau, C. Bill Hillier’s legacy: Space syntax—a synopsis of basic concepts, measures, and empirical application. Sustainability 13, 3394 (2021).
McNally, M. G. The four-step model. In Handbook of Transport Modelling (eds Hensher, D. A. & Button, K. J.) 35–53 (Emerald Group Publishing Limited, 2008).
Tzouras, P. G. et al. Agent-based models for simulating e-scooter sharing services: A review and a qualitative assessment. Int. J. Transp. Sci. Technol. 12, 71–85. https://doi.org/10.1016/j.ijtst.2022.02.001 (2023).
Raveau, S., Guo, Z., Carlos, J. & Wilson, N. H. M. A behavioural comparison of route choice on metro networks: Time, transfers, crowding, topology and socio-demographics. Transp. Res. Part A Policy Pract. 66, 185–195 (2014).
Prato, C. G. et al. Evaluation of land-use and transport network effects on cyclists ’ route choices in the Copenhagen Region in value-of-distance space. Int. J. Sustain. Transp. 12, 770 (2018).
Li, S., Muresan, M. & Fu, L. Cycling in Toronto, Ontario, Canada: Route choice behavior and implications for infrastructure planning. Transp. Res. Rec. 2662, 41–49. https://doi.org/10.3141/2662-05 (2017).
Di, X. & Liu, H. X. Boundedly rational route choice behavior: A review of models and methodologies. Transp. Res. Part B Methodol. 85, 142–179 (2016).
Bovy, P. H. L. On modelling route choice sets in transportation networks: A synthesis. Transp. Rev. 29, 43–68 (2009).
Ramaekers, K., Reumers, S., Wets, G. & Cools, M. Modelling route choice decisions of car travellers using combined GPS and diary data. Networks Spat. Econ. 13, 351–372 (2013).
Hess, S., Quddus, M., Rieser-Schüssler, N. & Daly, A. Developing advanced route choice models for heavy goods vehicles using GPS data. Transp. Res. Part E Logist. Transp. Rev. 77, 29–44 (2015).
Tribby, C. P., Miller, H. J., Brown, B. B., Werner, C. M. & Smith, K. R. Analyzing walking route choice through built environments using random forests and discrete choice techniques. Environ. Plan. B Urban Anal. City Sci. 44, 1145–1167 (2017).
Thompson Sargoni, O. & Manley, E. Neighbourhood-level pedestrian navigation using the construal level theory. Environ. Plan. B Urban Anal. City Sci. 50, 2151–2170 (2023).
Montello, D. R., Davis, R. C., Johnson, M. & Chrastil, E. R. The symmetry and asymmetry of pedestrian route choice. J. Environ. Psychol. 87, 102004 (2023).
Meister, A., Felder, M., Schmid, B. & Axhausen, K. W. Route choice modeling for cyclists on urban networks. Transp. Res. Part A Policy Pract. 173, 103723 (2023).
Ton, D., Duives, D., Cats, O. & Hoogendoorn, S. Evaluating a data-driven approach for choice set identification using GPS bicycle route choice data from Amsterdam. Travel Behav. Soc. 13, 105–117 (2018).
Meena, S. & Geethanjali, K. N. A survey on shortest path routing algorithms for public transport travel. Glob. J. Comput. Sci. Technol. 9, 73–76 (2010).
Brands, T., De Romph, E., Veitch, T. & Cook, J. Modelling public transport route choice, with multiple access and egress modes. In Transportation Research Procedia Vol. 1 12–23 (Elsevier, 2014).
Ringhand, M., Schackmann, D., Anke, J., Porojkow, I. & Petzoldt, T. Differences in route choice behavior when riding shared e-scooters vs . bicycles – A field study. J. Safety Res. (2024) https://doi.org/10.1016/j.jsr.2024.04.008.
Zhang, W., Buehler, R., Broaddus, A. & Sweeney, T. What type of infrastructures do e-scooter riders prefer? A route choice model. Transp. Res. Part D Transp. Environ. 94, 102761 (2021).
Hsueh, C. & Lin, J. J. Influential factors of the route choices of scooter riders: A GPS-based data study. J. Transp. Geogr. 113, 103719 (2023).
Cubells, J., Miralles-Guasch, C. & Marquet, O. E-scooter and bike-share route choice and detours: Modelling the influence of built environment and sociodemographic factors. J. Transp. Geogr. 111, 103664 (2023).
Menghini, G., Carrasco, N., Schüssler, N. & Axhausen, K. W. Route choice of cyclists in Zurich. Transp. Res. Part A Policy Pract. 44, 754–765 (2010).
Meister, A., Gupta, I. & Axhausen, K. W. Descriptive route choice analysis of cyclists in Zurich. In 21st Swiss Transport Research Conference (STRC 2021), Ascona, Switzerland (STRC, 2021). https://doi.org/10.3929/ethz-b-000504160.
Charlton, B., Sall, E., Schwartz, M. & Hood, J. Bicycle route choice data collection using GPS-enabled smartphones. TRB 2011 Annu. Meet. 1–10 (2011).
Hood, J., Sall, E. & Charlton, B. A GPS-based bicycle route choice model for San Francisco. California. Transp. Lett. 3, 63–75 (2011).
Broach, J., Dill, J. & Gliebe, J. Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transp. Res. Part A Policy Pract. 46, 1730–1740 (2012).
Sievert, K., Roen, M., Craig, C. M. & Morris, N. L. A survey of electric-scooter riders’ route choice, safety perception, and helmet use. Sustainability 15, 6609 (2023).
Sevtsuk, A. & Basu, R. The role of turns in pedestrian route choice: A clarification. J. Transp. Geogr. 102, 103392 (2022).
Hillier, B., Yang, T. & Turner, A. Normalising least angle choice in Depthmap—and how it opens up new perspectives on the global and local analysis of city space. J. Sp. Syntax 3, 155–193 (2012).
Koohsari, M. J. et al. Street network measures and adults’ walking for transport: Application of space syntax. Heal. Place 38, 89–95 (2016).
Lerman, Y., Rofè, Y. & Omer, I. Using space syntax to model pedestrian movement in urban transportation planning. Geogr. Anal. 46, 392–410 (2014).
van Nes, A. & Yamu, C. Introduction to Space Syntax in Urban Studies (Springer, 2021).
Berghauser Pont, M., Stavroulaki, G. & Marcus, L. Development of urban types based on network centrality, built density and their impact on pedestrian movement. Environ. Plan. B Urban Anal. City Sci. 46, 1549–1564 (2019).
Sharmin, S. & Kamruzzaman, M. Meta-analysis of the relationships between space syntax measures and pedestrian movement. Transp. Rev. 38, 524–550 (2018).
Jiang, B. & Jia, T. Agent-based simulation of human movement shaped by the underlying street structure. Int. J. Geogr. Inf. Sci. 25, 51–64 (2011).
Meister, A., Liang, Z., Felder, M. & Axhausen, K. W. Comparative study of route choice models for cyclists. J. Cycl. Micromobility Res. 2, 100018 (2024).
Feng, C., Jiao, J. & Wang, H. Estimating E-scooter traffic flow using big data to support planning for micromobility. J. Urban Technol. 29, 139–157 (2022).
Huber, S. & Friedrich, F. E-scooter route choice in Germany—Using stated preference data to investigate e-scooter route choice preferences. Transp. Res. Arena 72, 3877–3884 (2023).
Nikiforiadis, A. et al. Analysis of attitudes and engagement of shared e-scooter users. Transp. Res. Part D Transp. Environ. 94, 102790 (2021).
Elvik, R. The non-linearity of risk and the promotion of environmentally sustainable transport. Accid. Anal. Prev. 41, 849–855 (2009).
Stadt Mannheim. E-Scooter. https://www.mannheim.de/de/service-bieten/verkehr/e-scooter (2024).
OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org. https://www.openstreetmap.org/ (2023).
Turner, A., Penn, A. & Hillier, B. An algorithmic definition of the axial map. Environ. Plan. B Plan. Des. 32, 425–444 (2005).
Serra, M. & Hillier, B. Angular and metric distance in road network analysis: A nationwide correlation study. Comput. Environ. Urban Syst. 74, 194–207 (2019).
Ståhle, A. et al. Place Syntax Tool. (2021).
Hillier, B. & Iida, S. Network and psychological effects in urban movement. in Proceedings of Spatial Information Theory: International Conference, COSIT 2005,Ellicottsville, N.Y., U.S.A.,September 14-18, 2005 (eds. Cohn, A. G. & Mark, D. M.) (Springer-Verlag, 2005). https://doi.org/10.1007/11556114_30.
Gil, J. Street network analysis “edge effects”: Examining the sensitivity of centrality measures to boundary conditions. Environ. Plan. B Urban Anal. City Sci. 44, 819–836 (2017).
Bohannon, R. W. & Andrews, A. W. Normal walking speed: A descriptive meta-analysis. Physiotherapy 97, 182–189 (2011).
Wannes, M. & Verbeke, M. HMM with Non-emitting states for map matching. in European Conference on Data Analysis (ECDA) (2018).
Flötteröd, G. & Bierlaire, M. Metropolis-hastings sampling of paths. Transp. Res. Part B Methodol. 48, 53–66 (2013).
Prato, C. G. Route choice modeling: Past, present and future research directions. J. Choice Model. 2, 65–100 (2009).
Bierlaire, M. A short introduction to Biogeme. Technical report TRANSP-OR 230620. (2023).