Ahmad, J., Zhou, Z., Majdi, A., Alqurashi, M. & Deifalla, A. F. Overview of concrete performance made with waste rubber tires: A step toward sustainable concrete. Materials (Basel) 15, 5518 (2022).
Meesala, C. R. Influence of different types of fiber on the properties of recycled aggregate concrete. Struct. Concr. 20, 1656–1669 (2019).
Su, Y. et al. Modification of recycled concrete aggregate and its use in concrete: An overview of research progress. Materials (Basel) 16, 7144 (2023).
Ahmad, J. et al. A review on sustainable concrete with the partially substitutions of silica fume as a cementitious material. Sustainability 14, 12075 (2022).
Manan, A. et al. Physical properties of recycled concrete powder and waste tyre fibre reinforced concrete. Proc. Inst. Civ. Eng. Eng. Sustain. 1–14 (2024) https://doi.org/10.1680/jensu.24.00079.
Idir, R., Cyr, M. & Tagnit-Hamou, A. Use of fine glass as ASR inhibitor in glass aggregate mortars. Constr. Build. Mater. 24, 1309–1312 (2010).
Al-Zubaidi, A. B. & Al-Tabbakh, A. A. Recycling glass powder and its use as cement mortar applications. Int. J. Sci. Eng. Res. 7, 555–564 (2016).
Li, H., Xu, Y., Chen, P., Ge, J. & Wu, F. Impact energy consumption of high-volume rubber concrete with silica fume. Adv. Civ. Eng. 2019, 1–11 (2019).
Guerra, I., Vivar, I., Llamas, B., Juan, A. & Moran, J. Eco-efficient concretes: The effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. Waste Manag. 29, 643–646 (2009).
Malešev, M., Radonjanin, V. & Marinković, S. Recycled concrete as aggregate for structural concrete production. Sustainability 2, 1204–1225 (2010).
Butler, L., West, J. S. & Tighe, S. L. Effect of recycled concrete coarse aggregate from multiple sources on the hardened properties of concrete with equivalent compressive strength. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2013.05.074 (2013).
Zhu, L., Ning, Q., Han, W. & Bai, L. Compressive strength and microstructural analysis of recycled coarse aggregate concrete treated with silica fume. Constr. Build. Mater. 334, 127453 (2022).
Ismail, S. & Ramli, M. Engineering properties of treated recycled concrete aggregate (RCA) for structural applications. Constr. Build. Mater. 44, 464–476 (2013).
Turhollow, A. et al. The updated billion-ton resource assessment. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2014.09.007 (2014).
Turk, J., Cotič, Z., Mladenovič, A. & Šajna, A. Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Manag. 45, 194–205 (2015).
Kang, T. Performance of concrete structures with unique materials, reinforcement or geometry. Int. J. Concrete Struct. Mater. 7, 1–2 (2013).
Makul, N. et al. Design strategy for recycled aggregate concrete: A review of status and future perspectives. Crystals 11, 695 (2021).
Makul, N. et al. Use of recycled concrete aggregates in production of green cement-based concrete composites: A review. Crystals 11, 232 (2021).
Wijayasundara, M., Mendis, P. & Crawford, R. H. Methodology for the integrated assessment on the use of recycled concrete aggregate replacing natural aggregate in structural concrete. J. Clean. Prod. 166, 321–334 (2017).
Tabsh, S. W. & Abdelfatah, A. S. Influence of recycled concrete aggregates on strength properties of concrete. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2008.06.007 (2009).
Manan, A., Pu, Z. & Sabri, M. M. Environmental and human health impact of recycle concrete powder: An emergy-based LCA approach. Front. Environ. Sci. 12, 1505312. https://doi.org/10.3389/fenvs.2024.1505312 (2025).
Han, S., Zhao, S., Lu, D. & Wang, D. Performance improvement of recycled concrete aggregates and their potential applications in infrastructure: A review. Buildings 13, 1411 (2023).
Manan, A. et al. AI-based constitutive model simulator for predicting the axial load-deflection behavior of recycled concrete powder and steel fiber reinforced concrete column. Constr. Build. Mater. 470, 140628 (2025).
Chu, H. H. et al. Sustainable use of fly-ash: Use of gene-expression programming (GEP) and multi-expression programming (MEP) for forecasting the compressive strength geopolymer concrete. Ain Shams Eng. J. https://doi.org/10.1016/j.asej.2021.03.018 (2021).
Manan, A., Zhang, P., Ahmad, S. & Ahmad, J. Prediction of flexural strength in FRP bar reinforced concrete beams through a machine learning approach. Anti-Corrosion Methods Mater. 71, 562–579 (2024).
Tipu, R. K., Batra, V., Suman, Pandya, K. S. & Panchal, V. R. Enhancing load capacity prediction of column using eReLU-activated BPNN model. Structures (2023) https://doi.org/10.1016/j.istruc.2023.105600.
Tipu, R. K., Batra, V., Suman, Pandya, K. S. & Panchal, V. R. Efficient compressive strength prediction of concrete incorporating recycled coarse aggregate using Newton’s boosted backpropagation neural network (NB-BPNN). Structures (2023) https://doi.org/10.1016/j.istruc.2023.105559.
Mohamed, H. S. et al. Compressive behavior of elliptical concrete-filled steel tubular short columns using numerical investigation and machine learning techniques. Sci. Rep. 14, 27007 (2024).
Tipu, R. K. et al. Optimizing compressive strength in sustainable concrete: A machine learning approach with iron waste integration. Asian J. Civ. Eng. 25, 4487–4512 (2024).
Parhi, S. K. & Patro, S. K. Prediction of compressive strength of geopolymer concrete using a hybrid ensemble of grey wolf optimized machine learning estimators. J. Build. Eng. https://doi.org/10.1016/j.jobe.2023.106521 (2023).
Parhi, S. K. & Panigrahi, S. K. Alkali–silica reaction expansion prediction in concrete using hybrid metaheuristic optimized machine learning algorithms. Asian J. Civ. Eng. https://doi.org/10.1007/s42107-023-00799-8 (2024).
Kumar Dash, P., Kumar Parhi, S., Kumar Patro, S. & Panigrahi, R. Efficient machine learning algorithm with enhanced cat swarm optimization for prediction of compressive strength of GGBS-based geopolymer concrete at elevated temperature. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2023.132814 (2023).
Parhi, S. K., Panda, S., Dwibedy, S. & Panigrahi, S. K. Metaheuristic optimization of machine learning models for strength prediction of high-performance self-compacting alkali-activated slag concrete. Multiscale Multidiscip. Model. Exp. Des. https://doi.org/10.1007/s41939-023-00349-4 (2024).
Parhi, S. K. & Patro, S. K. Parametric analysis and prediction of geopolymerization process. Mater. Today Commun. 41, 111047 (2024).
Dash, P. K., Parhi, S. K., Patro, S. K. & Panigrahi, R. Influence of chemical constituents of binder and activator in predicting compressive strength of fly ash-based geopolymer concrete using firefly-optimized hybrid ensemble machine learning model. Mater. Today Commun. https://doi.org/10.1016/j.mtcomm.2023.107485 (2023).
Parhi, S. K., Nanda, A. & Panigrahi, S. K. Multi-objective optimization and prediction of strength along with durability in acid-resistant self-compacting alkali-activated concrete. Constr. Build. Mater. 456, 139235 (2024).
Singh, S., Patro, S. K. & Parhi, S. K. Evolutionary optimization of machine learning algorithm hyperparameters for strength prediction of high-performance concrete. Asian J. Civ. Eng. https://doi.org/10.1007/s42107-023-00698-y (2023).
Bui, D.-K., Nguyen, T., Chou, J.-S., Nguyen-Xuan, H. & Ngo, T. D. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr. Build. Mater. 180, 320–333 (2018).
Mansour, M. Y., Dicleli, M., Lee, J.-Y. & Zhang, J. Predicting the shear strength of reinforced concrete beams using artificial neural networks. Eng. Struct. 26, 781–799 (2004).
Shahmansouri, A. A., Bengar, H. A. & Ghanbari, S. Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. J. Build. Eng. 31, 101326 (2020).
Behnood, A., Olek, J. & Glinicki, M. A. Predicting modulus elasticity of recycled aggregate concrete using M5′ model tree algorithm. Constr. Build. Mater. 94, 137–147 (2015).
Kim, J. & Jang, H. Closed-loop recycling of C&D waste: Mechanical properties of concrete with the repeatedly recycled C&D powder as partial cement replacement. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2022.130977 (2022).
Bogas, J. A., Carriço, A. & Pereira, M. F. C. Mechanical characterization of thermal activated low-carbon recycled cement mortars. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2019.01.325 (2019).
Zhao, S. Y., Li, Y., Kang, X. M. & Fan, Y. H. Experimental study on frost resistance of recycled fine powder concrete. Ind. Constr 50, 112–118 (2020).
Gao, S. Full-component of waste cement and utilization of recycled concrete (2019).
Duan, Z., Singh, A., Xiao, J. & Hou, S. Combined use of recycled powder and recycled coarse aggregate derived from construction and demolition waste in self-compacting concrete. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2020.119323 (2020).
Kim, Y. J. Quality properties of self-consolidating concrete mixed with waste concrete powder. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2016.12.174 (2017).
Zhang, H., Xiao, J., Tang, Y., Duan, Z. & Poon, C. S. Long-term shrinkage and mechanical properties of fully recycled aggregate concrete: Testing and modelling. Cem. Concr. Compos. 130, 104527. https://doi.org/10.1016/j.cemconcomp.2022.104527 (2022).
Wu, H., Yang, D., Xu, J., Liang, C. & Ma, Z. Water transport and resistance improvement for the cementitious composites with eco-friendly powder from various concrete wastes. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2021.123247 (2021).
Wu, R. et al. Tensile behavior of strain hardening cementitious composites (Shcc) containing reactive recycled powder from various c&d waste. J. Renew. Mater. https://doi.org/10.32604/jrm.2021.013669 (2021).
Wu, H., Liang, C., Xiao, J., Xu, J. & Ma, Z. Early-age behavior and mechanical properties of cement-based materials with various types and fineness of recycled powder. Struct. Concr. https://doi.org/10.1002/suco.202000834 (2022).
Li, S., Gao, J., Li, Q. & Zhao, X. Investigation of using recycled powder from the preparation of recycled aggregate as a supplementary cementitious material. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2020.120976 (2021).
Ma, Z., Shen, J., Wu, H. & Zhang, P. Properties and activation modification of eco-friendly cementitious materials incorporating high-volume hydrated cement powder from construction waste. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2021.125788 (2022).
Xiao, J., Ma, Z., Sui, T., Akbarnezhad, A. & Duan, Z. Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2018.03.277 (2018).
He, X. et al. Humid hardened concrete waste treated by multiple wet-grinding and its reuse in concrete. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2022.128485 (2022).
Ma, Z., Yao, P., Yang, D. & Shen, J. Effects of fire-damaged concrete waste on the properties of its preparing recycled aggregate, recycled powder and newmade concrete. J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2021.08.116 (2021).
Letelier, V., Tarela, E., Muñoz, P. & Moriconi, G. Combined effects of recycled hydrated cement and recycled aggregates on the mechanical properties of concrete. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2016.12.010 (2017).
Cantero, B., Bravo, M., de Brito, J., del Bosque, I. F. S. & Medina, C. Thermal performance of concrete with recycled concrete powder as partial cement replacement and recycled CDW aggregate. Appl. Sci. https://doi.org/10.3390/app10134540 (2020).
Sun, C., Chen, Q., Xiao, J. & Liu, W. Utilization of waste concrete recycling materials in self-compacting concrete. Resour. Conserv. Recycl. 161, 104930 (2020).
Tang, Y., Xiao, J., Zhang, H., Duan, Z. & Xia, B. Mechanical properties and uniaxial compressive stress-strain behavior of fully recycled aggregate concrete. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2022.126546 (2022).
Quan, H. & Kasami, H. Experimental study on the effects of recycled concrete powder on properties of self-compacting concrete. Open Civ. Eng. J. https://doi.org/10.2174/1874149501812010430 (2018).
Lv, F. et al. An improved extreme gradient boosting approach to vehicle speed prediction for construction simulation of earthwork. Autom. Constr. https://doi.org/10.1016/j.autcon.2020.103351 (2020).
Yoo, K., Shukla, S. K., Ahn, J. J., Oh, K. & Park, J. Decision tree-based data mining and rule induction for identifying hydrogeological parameters that influence groundwater pollution sensitivity. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2016.01.075 (2016).
Taunk, K., De, S., Verma, S. & Swetapadma, A. A brief review of nearest neighbor algorithm for learning and classification. In 2019 international conference on intelligent computing and control systems, ICCS 2019 (2019). https://doi.org/10.1109/ICCS45141.2019.9065747.
Manan, A., Zhang, P., Ahmad, S., Umar, M. & Raza, A. Machine learning prediction model integrating experimental study for compressive strength of carbon-nanotubes composites. J. Eng. Res. https://doi.org/10.1016/j.jer.2024.08.007 (2024).
Chicco, D., Warrens, M. J. & Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. https://doi.org/10.7717/PEERJ-CS.623 (2021).
Kadhim, Z. S., Abdullah, H. S. & Ghathwan, K. I. Artificial neural network hyperparameters optimization: A survey. Int. J. Online Biomed. Eng. https://doi.org/10.3991/ijoe.v18i15.34399 (2022).
Kumar, N., Maurya, V. & Kumar Maurya, V. a Review on machine learning (feature selection, classification and clustering) approaches of big data mining in different area of research journal of critical reviews a review on machine learning (feature selection, classification and clustering) approac. Artic. J. Crit. Rev. 7, 2020 (2020).
Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. https://doi.org/10.1007/s11222-009-9153-8 (2011).
Manan, A., Zhang, P., Ahmad, S. & Ahmad, J. Optimizing hybrid fibre-reinforced polymer bars design: A machine learning approach.
Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, (2017).
Manan, A. et al. Machine learning prediction of recycled concrete powder with experimental validation and life cycle assessment study. Case Stud. Constr. Mater. 21, e04053 (2024).
Abdulalim Alabdullah, A. et al. Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2022.128296 (2022).