• Afshar, A., Kaveh, A., & Shoghli, O. R. (2007). Multi-objective optimization of time-cost-quality using multi-colony ant algorithm. Fuzzy Sets and Systems, 8(2), 113–124.


    Google Scholar
     

  • Agarwal, A. K. (2024). Fuzzy-ahp methodology for ranking of hospitals based on waste management practices: A study of Gwalior City. Environmental Quality Management. https://doi.org/10.1002/tqem.22228

    Article 

    Google Scholar
     

  • Agarwal, A. K., Chauhan, S. S., Sharma, K., & Sethi, K. C. (2024). Development of time–cost trade-off optimization model for construction projects with MOPSO technique. Asian Journal of Civil Engineering, , Article 0123456789. https://doi.org/10.1007/s42107-024-01063-3

    Article 

    Google Scholar
     

  • Ahmad, E., Khatua, L., Chandra, K., Miguel, S., & Upadhyay, V. A. (2025). Comparative seismic analysis of symmetrical and asymmetrical G + 7 structures using STAAD. Pro : insights into performance and material efficiency. Asian Journal of Civil Engineering, 26(4), 1495–1509.

    Article 

    Google Scholar
     

  • Albayrak, G., & Özdemir, I. (2018). Multimodal optimization for time-cost trade-off in construction projects using a novel hybrid method based on FA and PSO. Revista De La Construccion. https://doi.org/10.7764/RDLC.17.2.304

    Article 

    Google Scholar
     

  • Amiri, M., Abtahi, A. R., & Khalili-Damghani, K. (2013). Solving a generalised precedence multi-objective multi-mode time-cost-quality trade-off project scheduling problem using a modified NSGA-II algorithm. International Journal of Services and Operations Management, 14(3), 355–372. https://doi.org/10.1504/IJSOM.2013.052095

    Article 

    Google Scholar
     

  • Anagnostopoulos, K. P., & Kotsikas, L. (2010). Experimental evaluation of simulated annealing algorithms for the time-cost trade-off problem. Applied Mathematics and Computation. https://doi.org/10.1016/j.amc.2010.05.056

    Article 
    MathSciNet 

    Google Scholar
     

  • Arya, A., Gunarani, G. I., Rathinakumar, V., Sharma, A., Pati, A. K., & Sethi, K. C. (2024). NSGA – III based optimization model for balancing time, cost, and quality in resource – constrained retrofitting projects. Asian Journal of Civil Engineering, , Article 0123456789. https://doi.org/10.1007/s42107-024-01133-6

    Article 

    Google Scholar
     

  • Behera, A. P., Dhawan, A., Rathinakumar, V., Bharadwaj, M., Rajput, J. S., & Sethi, K. C. (2024). Optimizing time, cost, environmental impact, and client satisfaction in sustainable construction projects using LHS-NSGA-III: A multi-objective approach. Asian Journal of Civil Engineering, , Article 0123456789. https://doi.org/10.1007/s42107-024-01221-7

    Article 

    Google Scholar
     

  • Bharadwaj, M., Patwardhan, M., & Goyal, C. (2025). Factors responsible for sustainable habitat: An end-user satisfaction. In S. Pathak, A. K. Shukla, S. Sharma, & V. P. Singh (Eds.), Intelligent infrastructure and smart materials: Sustainable technologies for a greener future (pp. 1–10). Springer Nature Switzerland.


    Google Scholar
     

  • Bharadwaj, M., Patwardhan, M., & Sharma, K. (2025a). Advanced multi-objective bid optimization using TCQEES and opposition-based NSGA-III: A sustainable approach for developing economies. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-025-01518-1

    Article 

    Google Scholar
     

  • Bharadwaj, M., Patwardhan, M., & Sharma, K. (2025b). Multi-objective optimization of responsible sourcing, consumption, and production in construction supply chains: An NSGA-III approach toward achieving SDG 12. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-024-01252-0

    Article 

    Google Scholar
     

  • Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/TEVC.2013.2281535

    Article 

    Google Scholar
     

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/4235.996017

    Article 

    Google Scholar
     

  • Eshtehardian, E., Afshar, A., & Abbasnia, R. (2009). Fuzzy-based MOGA approach to stochastic time-cost trade-off problem. Automation in Construction. https://doi.org/10.1016/j.autcon.2009.02.001

    Article 

    Google Scholar
     

  • Fallah-Mehdipour, E., Bozorg Haddad, O., Rezapour Tabari, M. M., & Mariño, M. A. (2012). Extraction of decision alternatives in construction management projects: Application and adaptation of NSGA-II and MOPSO. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2011.08.139

    Article 

    Google Scholar
     

  • Huang, Y. S., Deng, J. J., & Zhang, Y. Y. (2008). TI time-cost-quality tradeoff optimization in construction project based on modified ant colony algorithm. Proceedings of the 7th International Conference on Machine Learning and Cybernetics ICMLC, 2(July), 1031–1035. https://doi.org/10.1109/ICMLC.2008.4620556

    Article 

    Google Scholar
     

  • Kalhor, E., Khanzadi, M., Eshtehardian, E., & Afshar, A. (2011). Stochastic time-cost optimization using non-dominated archiving ant colony approach. Automation in Construction, 20(8), 1193–1203. https://doi.org/10.1016/j.autcon.2011.05.003

    Article 

    Google Scholar
     

  • Kaveh, A. (2014). Optimum cost design of reinforced concrete one-way ribbed slabs using CBO, PSO and Democratic PSO algorithms. Asian Journal of Civil Engineering, 15(6), 788–802.


    Google Scholar
     

  • Kaveh, A., & Ilchi Ghazaan, M. (2020). A new VPS-based algorithm for multi-objective optimization problems. Engineering with Computers, 36(3), 1029–1040. https://doi.org/10.1007/s00366-019-00747-8

    Article 

    Google Scholar
     

  • Kaveh, A., & Talatahari, S. (2011). Hybrid charged system search and particle swarm optimization for engineering design problems. Engineering Computations (Swansea Wales), 28(4), 423–440. https://doi.org/10.1108/02644401111131876

    Article 

    Google Scholar
     

  • Kaveh, A., Bakhshpoori, T., & Hamze-Ziabari, S. M. (2018). M5’ and Mars based prediction models for properties of selfcompacting concrete containing fly Ash. Periodica Polytechnica Civil Engineering, 62(2), 281–294. https://doi.org/10.3311/PPci.10799

    Article 

    Google Scholar
     

  • Kaveh, A., Dadras Eslamlou, A., Javadi, S. M., & Geran Malek, N. (2021). Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders. Acta Mechanica, 232(3), 921–931. https://doi.org/10.1007/s00707-020-02878-2

    Article 

    Google Scholar
     

  • Kaveh, A., Khanzadi, M., Alipour, M., & Naraky, M. R. (2015). CBO and CSS algorithms for resource allocation and time-cost trade-off. Periodica Polytechnica Civil Engineering, 59(3), 361–371. https://doi.org/10.3311/PPci.7788

    Article 

    Google Scholar
     

  • Kaveh, A., Moghanni, R. M., & Javadi, S. M. (2019). Ground motion record selection using multi-objective optimization algorithms: A comparative study. Periodica Polytechnica Civil Engineering, 63(3), 812–822. https://doi.org/10.3311/PPci.14354

    Article 

    Google Scholar
     

  • Khalili-Damghani, K., Tavana, M., Abtahi, A. R., & Santos Arteaga, F. J. (2015). Solving multi-mode time-cost-quality trade-off problems under generalized precedence relations. Optimization Methods and Software. https://doi.org/10.1080/10556788.2015.1005838

    Article 
    MathSciNet 

    Google Scholar
     

  • Liu, D., Li, H., Wang, H., Qi, C., & Rose, T. (2020). Discrete symbiotic organisms search method for solving large-scale time-cost trade-off problem in construction scheduling. Expert Systems With Applications. https://doi.org/10.1016/j.eswa.2020.113230

    Article 

    Google Scholar
     

  • Liu, J. P., Niu, D. X., & Zhang, Y. Z. (2009). Multi-objective optimization of cost – quality – time – Security in construction project management based on particle swarm method. 2nd International Workshop on Computer Science and Engineering WCSE 2009, 1(i), 425–429. https://doi.org/10.1109/WCSE.2009.702

    Article 

    Google Scholar
     

  • Monghasemi, S., Nikoo, M. R., Khaksar Fasaee, M. A., & Adamowski, J. (2015). A novel multi criteria decision making model for optimizing time-cost-quality trade-off problems in construction projects. Expert Systems With Applications. https://doi.org/10.1016/j.eswa.2014.11.032

    Article 

    Google Scholar
     

  • Nagayo, A. M., Singh, R., Dhawan, A., Manjunath, T. C., Qasem, A., Sethi, K. C., & Sharma, K. (2025). Integrating environmental sustainability in construction time – cost trade – off for decision – making using hybrid NSGA – III and MOPSO approach. Asian Journal of Civil Engineering, , Article 0123456789. https://doi.org/10.1007/s42107-025-01265-3

    Article 

    Google Scholar
     

  • Pati, A. K., Mishra, S., Misra, A., & Mishra, S. K. (2024). Heat and mass transport aspects of nanofluid flow towards a vertical flat surface influenced by electrified nanoparticles and electric Reynolds number. East European Journal of Physics, 2024(2), 234–241. https://doi.org/10.26565/2312-4334-2024-2-22

    Article 

    Google Scholar
     

  • Patil, A. S., Agarwal, A. K., Sharma, K., & Trivedi, M. K. (2024). Time-cost trade-off optimization model for retrofitting planning projects using MOGA. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-024-01014-y

    Article 

    Google Scholar
     

  • Prasad, A., Mayank, B., Gaurav, C., Prachi, S., & Jyoti, S. (2024). Optimizing trade – off between time, cost, And carbon emissions in construction using NSGA – III : An integrated approach for sustainable development. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-024-01176-9

    Article 

    Google Scholar
     

  • Rajashekhar, S. A., Sharma, K., Trivedi, M. K., Galindo, M. V., Singh, K., & Valencia, A. B. M. (2025). Investigating the impact of adoption of smart healthcare technologies on quality of patient care using two-staged SEM-ANN approach. Discover Public Health. https://doi.org/10.1186/s12982-025-00738-9

    Article 

    Google Scholar
     

  • Sethi, K. C., Prajapati, U., Parihar, A., Gupta, C., Shrivastava, G., & Sharma, K. (2024a). Development of optimization model for balancing time, cost, and environmental impact in retrofitting projects with NSGA-III. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-024-01102-z

    Article 

    Google Scholar
     

  • Sethi, K. C., Rathinakumar, V., Harishankar, S., Bhadoriya, G., & Pati, A. K. (2024b). Development of discrete opposition-based NSGA-III model for optimizing trade-off between discrete time, cost, and resource in construction projects. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-024-01069-x

    Article 

    Google Scholar
     

  • Sethy, B. P., Gupta, P., Chandra, A., Sethi, K. C., Behera, A. P., & Sharma, K. (2024). Optimizing construction time, cost, and quality: A hybrid AHP-NSGA-III model for enhanced multi-objective decision making. Asian Journal of Civil Engineering, , Article 0123456789. https://doi.org/10.1007/s42107-024-01232-4

    Article 

    Google Scholar
     

  • Sethy, B. P., Prajapati, U. K. N., Maharana, D., Lakkimsetty, N. R., & Maurya, S. (2025). Artificial intelligence models for predicting unconfined compressive strength of mixed soil types: Focusing on clay and sand. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-025-01285-z

    Article 

    Google Scholar
     

  • Sharma, A., & Sharma, A. (2024a). Development of resource – constrained time – cost trade – off optimization model for ventilation system retrofitting using NSGA – III. Asian Journal of Civil Engineering(8). https://doi.org/10.1007/s42107-024-01138-1

    Article 

    Google Scholar
     

  • Sharma, A., & Sharma, A. (2024b). Optimizing ventilation system retrofitting: Balancing time, cost, and indoor air quality with NSGA-III. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-024-01143-4

    Article 

    Google Scholar
     

  • Sharma, K., & Trivedi, M. K. (2020). Latin hypercube sampling-based NSGA-III optimization model for multimode resource constrained time–cost–quality–safety trade-off in construction projects. International Journal of Construction Management. https://doi.org/10.1080/15623599.2020.1843769

    Article 

    Google Scholar
     

  • Sharma, K., & Trivedi, M. K. (2021). Development of multi-objective scheduling model for construction projects using opposition-based NSGA III. Journal of the Institution of Engineers (India): Series A. https://doi.org/10.1007/s40030-021-00529-w

    Article 

    Google Scholar
     

  • Sharma, K., & Trivedi, M. K. (2022). Latin hypercube sampling-based NSGA-III optimization model for multimode resource constrained time–cost–quality–safety trade-off in construction projects. International Journal of Construction Management, 22(16), 3158–3168. https://doi.org/10.1080/15623599.2020.1843769

    Article 

    Google Scholar
     

  • Sharma, K., & Trivedi, M. K. (2023). Modelling the resource constrained time-cost-quality-safety risk-environmental impact trade-off using opposition-based NSGA III. Asian Journal of Civil Engineering, 24(8), 3083–3098. https://doi.org/10.1007/s42107-023-00696-0

    Article 

    Google Scholar
     

  • Sharma, K., Trivedi, M. K. (2022a). AHP and NSGA-II-based time–cost–quality trade-off optimization model for construction projects. 45–63. https://doi.org/10.1007/978-981-16-1220-6_5

  • Singh, R., Sangeeta, V., Manjunath, T. C., Singh, P., Bishoyi, S. S., & Pati, A. K. (2025). MOPSO-driven optimization for sustainable retrofitting: Balancing time, cost, and environmental impacts. Asian Journal of Civil Engineeringhttps://doi.org/10.1007/s42107-025-01305-y

    Article 

    Google Scholar
     

  • Sree, K., Devara, P., Nagendra, P., Prasad, A., Manmohan, B., & Sudhanshu, S. (2025). Optimization of sustainable retrofitting using OBL-MOTLBO: A multi- objective approach to time, cost, and environmental trade-offs. Asian Journal of Civil Engineering, 26(12), 5185–5203.

    Article 

    Google Scholar
     

  • Suliman, M. O., Kumar, V. S. S., & Abdulal, W. (2011). Optimization of uncertain construction time-cost trade off problem using simulated annealing algorithm. In: Proceedings of the 2011 World Congress on Information and Communication Technologies, WICT 2011, 489–494. https://doi.org/10.1109/WICT.2011.6141294

  • Tiwari, A., Sharma, K., & Trivedi, M. K. (2020). NSGA III based time-cost-environmental impact trade-off optimization time – cost – environmental impact trade-off optimization model. December, 10–25. https://doi.org/10.1007/978-981-16-1220-6

  • Trivedi, M. K., & Sharma, K. (2023). Construction time–cost–resources–quality trade-off optimization using NSGA-III. Asian Journal of Civil Engineering, 24(8), 3543–3555. https://doi.org/10.1007/s42107-023-00731-0

    Article 

    Google Scholar
     

  • Xu, J., Zheng, H., Zeng, Z., Wu, S., & Shen, M. (2012). Discrete time-cost-environment trade-off problem for large-scale construction systems with multiple modes under fuzzy uncertainty and its application to Jinping-II hydroelectric project. International Journal of Project Management. https://doi.org/10.1016/j.ijproman.2012.01.019

    Article 

    Google Scholar
     

  • Zahraie, B., & Tavakolan, M. (2009). Stochastic time-cost-resource utilization optimization using nondominated sorting genetic algorithm and discrete fuzzy sets. Journal of Construction Engineering and Management. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000092

    Article 

    Google Scholar
     

  • Zheng, H., & Zhong, L. (2017). Discrete time-cost-environment trade-off problem and its application to a large-scale construction project. Advances in Intelligent Systems and Computing, 502, 1375–1382. https://doi.org/10.1007/978-981-10-1837-4_111

    Article 

    Google Scholar
     



  • Source link