• Hao, H., Xu, C., Zhang, W., Yang, S. & Muntean, G.-M. Joint task offloading, resource allocation, and trajectory design for multi-UAV cooperative edge computing with task priority. IEEE Trans. Mob. Comput.23, 8649–8663 (2024).


    Google Scholar
     

  • Tang, J. & Zeng, Y. UAV data acquisition and processing assisted by UGV-enabled mobile edge computing. IEEE Trans. Ind. Inform. (2025).

  • Al-Bakhrani, A. A., Li, M., Obaidat, M. S. & Amran, G. A. Moalf-uav-mec: Adaptive multi-objective optimization for UAV-assisted mobile edge computing in dynamic IOT environments. IEEE Internet Things J. (2025).

  • Tang, Y. et al. Integrated sensing, computation, and communication for UAV-assisted federated edge learning. IEEE Trans. Wirel. Commun. (2025).

  • Jia, Z. et al. Distributionally robust optimization for aerial multi-access edge computing via cooperation of UAVS and haps. IEEE Trans. Mobile Comput. (2025).

  • Li, J. et al. A learning-based stochastic game for energy efficient optimization of UAV trajectory and task offloading in space/aerial edge computing. IEEE Trans. Veh. Technol. (2025).

  • Cao, P. et al. UAV swarm cooperative search based on scalable multiagent deep reinforcement learning with digital twin-enabled sim-to-real transfer. IEEE Trans. Mob. Comput. (2025).

  • Wang, C. et al. Computing power in the sky: Digital twin-assisted collaborative computing with multi-UAV networks. IEEE Trans. Veh. Technol. (2025).

  • Teng, J., Sun, H., Liu, P. & Jiang, S. An improved transmvsnet algorithm for three-dimensional reconstruction in the unmanned aerial vehicle remote sensing domain. Sensors24, 2064 (2024).


    Google Scholar
     

  • Dabiri, M. T., Hasna, M., Allhunibal, S. & Qaraq, K. Joint UAV-based directional thz communication and 3d map construction. In 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), 1–6 (IEEE, 2024).

  • Sohl, M. A. & Mahmood, S. A. Low-cost UAV in photogrammetric engineering and remote sensing: Georeferencing, dem accuracy, and geospatial analysis. J. Geovis. Spat. Anal.8, 14 (2024).


    Google Scholar
     

  • Dritsas, E. & Trigka, M. Remote sensing and geospatial analysis in the big data era: A survey. Remote Sens.17, 550 (2025).


    Google Scholar
     

  • Wan, P., Xu, G., Chen, J. & Zhou, Y. Deep reinforcement learning enabled multi-UAV scheduling for disaster data collection with time-varying value. IEEE Trans. Intell. Transp. Syst.25, 6691–6702 (2024).


    Google Scholar
     

  • Ruess, S., Paulus, G. & Lang, S. Automated derivation of vine objects and ecosystem structures using UAS-based data acquisition, 3d point cloud analysis, and obia. Appl. Sci.14, 3264 (2024).


    Google Scholar
     

  • Sedlak, B., Murturi, I., Donta, P. K. & Dustdar, S. A privacy enforcing framework for data streams on the edge. IEEE Trans. Emerg. Top. Comput.12, 852–863. https://doi.org/10.1109/TETC.2023.3315131 (2024).


    Google Scholar
     

  • Dehury, C. K., Kumar Donta, P., Dustdar, S. & Srirama, S. N. Ccei-iot: Clustered and cohesive edge intelligence in internet of things. In 2022 IEEE International Conference on Edge Computing and Communications (EDGE), 33–40. https://doi.org/10.1109/EDGE55608.2022.00017 (2022).

  • Saleh, A. et al. Follow-me ai: Energy-efficient user interaction with smart environments. IEEE Pervasive Comput.24, 32–42. https://doi.org/10.1109/MPRV.2025.3539421 (2025).


    Google Scholar
     

  • Yuan, J. et al. Grain crop yield prediction using machine learning based on UAV remote sensing: A systematic literature review. Drones. 8, https://doi.org/10.3390/drones8100559 (2024).

  • Fang, Y., Kuang, Z., Wang, H., Lin, S. & Liu, A. Minimizing energy consumption of collaborative deployment and task offloading in two-tier UAV edge computing networks. J. Syst. Archit. 103511 (2025).

  • Wu, Y., Mu, X., Shi, H. & Hou, M. An object detection model AAPW-yolo for UAV remote sensing images based on adaptive convolution and reconstructed feature fusion. Sci. Rep.15, 16214 (2025).


    Google Scholar
     

  • Ao, T. et al. Energy-efficient multi-uavs cooperative trajectory optimization for communication coverage: An madrl approach. Remote Sens.15, https://doi.org/10.3390/rs15020429 (2023).

  • Westheider, J., Rückin, J. & Popović, M. Multi-UAV adaptive path planning using deep reinforcement learning. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 649–656. https://doi.org/10.1109/IROS55552.2023.10342516 (2023).

  • Fu, H. et al. A hierarchical path planning framework of plant protection uav based on the improved d3qn algorithm and remote sensing image. Remote Sens.17, https://doi.org/10.3390/rs17152704 (2025).

  • Zhang, G. et al. Spiking neural networks in intelligent edge computing. IEEE Consum. Electron. Mag.14, 66–75. https://doi.org/10.1109/MCE.2024.3506502 (2025).


    Google Scholar
     

  • Huang, C.-H., Chen, W.-T., Chang, Y.-C. & Wu, K.-T. An edge and trustworthy AI UAV system with self-adaptivity and hyperspectral imaging for air quality monitoring. IEEE Internet Things J.11, 32572–32584 (2024).


    Google Scholar
     

  • Shan, J., Jiang, W., Huang, Y., Yuan, D. & Liu, Y. Unmanned aerial vehicle (UAV)-based pavement image stitching without occlusion, crack semantic segmentation, and quantification. IEEE Trans. Intell. Transport. Syst. (2024).

  • Yuan, Y. et al. Edge-cloud collaborative UAV object detection: Edge-embedded lightweight algorithm design and task offloading using fuzzy neural network. IEEE Trans. Cloud Comput.12, 306–318 (2024).


    Google Scholar
     

  • Koubaa, A., Ammar, A., Abdelkader, M., Alhabashi, Y. & Ghouti, L. Aero: Ai-enabled remote sensing observation with onboard edge computing in uavs. Remote Sens.15, https://doi.org/10.3390/rs15071873 (2023).

  • Han, Y., Duan, B., Guan, R., Yang, G. & Zhen, Z. Luffd-yolo: A lightweight model for UAV remote sensing forest fire detection based on attention mechanism and multi-level feature fusion. Remote Sens.16, https://doi.org/10.3390/rs16122177 (2024).

  • Zhou, S., Zhou, H. & Qian, L. A multi-scale small object detection algorithm SMA-yolo for UAV remote sensing images. Sci. Rep.15, 9255 (2025).


    Google Scholar
     

  • Yang, S. et al. Wheat yield prediction using machine learning method based on UAV remote sensing data. Drones. 8, https://doi.org/10.3390/drones8070284 (2024).

  • Duan, Z., Liu, J., Ling, X., Zhang, J. & Liu, Z. Ernet: A rapid road crack detection method using low-altitude UAV remote sensing images. Remote Sens.16, https://doi.org/10.3390/rs16101741 (2024).

  • Oubbati, O. S., Alotaibi, J., Alromithy, F., Atiquzzaman, M. & Altimania, M. R. A UAV-UGV cooperative system: Patrolling and energy management for urban monitoring. IEEE Trans. Veh. Technol.74, 13521–13536. https://doi.org/10.1109/TVT.2025.3563971 (2025).


    Google Scholar
     

  • Alotaibi, J., Oubbati, O. S., Atiquzzaman, M., Alromithy, F. & Altimania, M. R. Optimizing disaster response with UAV-mounted RIS and hap-enabled edge computing in 6g networks. J. Netw. Comput. Appl. 104213 (2025).

  • Xu, H. et al. Edge computing resource allocation for unmanned aerial vehicle assisted mobile network with blockchain applications. IEEE Trans. Wirel. Commun.20, 3107–3121 (2021).


    Google Scholar
     

  • Gao, X., Zhu, X. & Zhai, L. Aoi-sensitive data collection in multi-UAV-assisted wireless sensor networks. IEEE Trans. Wirel. Commun.22, 5185–5197. https://doi.org/10.1109/TWC.2022.3232366 (2023).


    Google Scholar
     

  • Wan, P., Xu, G., Chen, J. & Zhou, Y. Deep reinforcement learning enabled multi-UAV scheduling for disaster data collection with time-varying value. IEEE Trans. Intell. Transp. Syst.25, 6691–6702. https://doi.org/10.1109/TITS.2023.3345280 (2024).


    Google Scholar
     

  • Liao, Y. et al. Low-latency data computation of inland waterway USVS for RIS-assisted UAV MEC network. IEEE Internet Things J.11, 26713–26726. https://doi.org/10.1109/JIOT.2024.3387017 (2024).


    Google Scholar
     

  • Wang, B. et al. Aav-assisted joint mobile edge computing and data collection via matching-enabled deep reinforcement learning. IEEE Internet Things J.12, 19782–19800. https://doi.org/10.1109/JIOT.2025.3542025 (2025).


    Google Scholar
     

  • Raivi, A. M. & Moh, S. Jdaco: Joint data aggregation and computation offloading in UAV-enabled internet of things for post-disaster scenarios. IEEE Internet Things J.11, 16529–16544. https://doi.org/10.1109/JIOT.2024.3354950 (2024).


    Google Scholar
     

  • Huang, J., Zhang, M., Wan, J., Chen, Y. & Zhang, N. Joint data caching and computation offloading in UAV-assisted internet of vehicles via federated deep reinforcement learning. IEEE Trans. Veh. Technol.73, 17644–17656. https://doi.org/10.1109/TVT.2024.3429507 (2024).


    Google Scholar
     

  • Zhang, Y. et al. Joint trajectory and resource optimization for UAV and d2d-enabled heterogeneous edge computing networks. IEEE Trans. Veh. Technol.73, 13816–13827. https://doi.org/10.1109/TVT.2024.3397335 (2024).


    Google Scholar
     

  • Wang, Z., Du, J., Jiang, C., Ren, Y. & Zhang, X.-P. UAV-assisted target tracking and computation offloading in USV-based MEC networks. IEEE Trans. Mob. Comput.23, 11389–11405. https://doi.org/10.1109/TMC.2024.3396121 (2024).


    Google Scholar
     

  • Oubbati, O. S., Chaib, N., Lakas, A. & Bitam, S. On-demand routing for urban vanets using cooperating UAVS. In 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT), 108–113 (IEEE, 2018).

  • Shao, R., Du, C., Chen, H. & Li, J. Sunet: Change detection for heterogeneous remote sensing images from satellite and UAV using a dual-channel fully convolution network. Remote Sens.13, 3750 (2021).


    Google Scholar
     



  • Source link