Hao, H., Xu, C., Zhang, W., Yang, S. & Muntean, G.-M. Joint task offloading, resource allocation, and trajectory design for multi-UAV cooperative edge computing with task priority. IEEE Trans. Mob. Comput.23, 8649–8663 (2024).
Tang, J. & Zeng, Y. UAV data acquisition and processing assisted by UGV-enabled mobile edge computing. IEEE Trans. Ind. Inform. (2025).
Al-Bakhrani, A. A., Li, M., Obaidat, M. S. & Amran, G. A. Moalf-uav-mec: Adaptive multi-objective optimization for UAV-assisted mobile edge computing in dynamic IOT environments. IEEE Internet Things J. (2025).
Tang, Y. et al. Integrated sensing, computation, and communication for UAV-assisted federated edge learning. IEEE Trans. Wirel. Commun. (2025).
Jia, Z. et al. Distributionally robust optimization for aerial multi-access edge computing via cooperation of UAVS and haps. IEEE Trans. Mobile Comput. (2025).
Li, J. et al. A learning-based stochastic game for energy efficient optimization of UAV trajectory and task offloading in space/aerial edge computing. IEEE Trans. Veh. Technol. (2025).
Cao, P. et al. UAV swarm cooperative search based on scalable multiagent deep reinforcement learning with digital twin-enabled sim-to-real transfer. IEEE Trans. Mob. Comput. (2025).
Wang, C. et al. Computing power in the sky: Digital twin-assisted collaborative computing with multi-UAV networks. IEEE Trans. Veh. Technol. (2025).
Teng, J., Sun, H., Liu, P. & Jiang, S. An improved transmvsnet algorithm for three-dimensional reconstruction in the unmanned aerial vehicle remote sensing domain. Sensors24, 2064 (2024).
Dabiri, M. T., Hasna, M., Allhunibal, S. & Qaraq, K. Joint UAV-based directional thz communication and 3d map construction. In 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), 1–6 (IEEE, 2024).
Sohl, M. A. & Mahmood, S. A. Low-cost UAV in photogrammetric engineering and remote sensing: Georeferencing, dem accuracy, and geospatial analysis. J. Geovis. Spat. Anal.8, 14 (2024).
Dritsas, E. & Trigka, M. Remote sensing and geospatial analysis in the big data era: A survey. Remote Sens.17, 550 (2025).
Wan, P., Xu, G., Chen, J. & Zhou, Y. Deep reinforcement learning enabled multi-UAV scheduling for disaster data collection with time-varying value. IEEE Trans. Intell. Transp. Syst.25, 6691–6702 (2024).
Ruess, S., Paulus, G. & Lang, S. Automated derivation of vine objects and ecosystem structures using UAS-based data acquisition, 3d point cloud analysis, and obia. Appl. Sci.14, 3264 (2024).
Sedlak, B., Murturi, I., Donta, P. K. & Dustdar, S. A privacy enforcing framework for data streams on the edge. IEEE Trans. Emerg. Top. Comput.12, 852–863. https://doi.org/10.1109/TETC.2023.3315131 (2024).
Dehury, C. K., Kumar Donta, P., Dustdar, S. & Srirama, S. N. Ccei-iot: Clustered and cohesive edge intelligence in internet of things. In 2022 IEEE International Conference on Edge Computing and Communications (EDGE), 33–40. https://doi.org/10.1109/EDGE55608.2022.00017 (2022).
Saleh, A. et al. Follow-me ai: Energy-efficient user interaction with smart environments. IEEE Pervasive Comput.24, 32–42. https://doi.org/10.1109/MPRV.2025.3539421 (2025).
Yuan, J. et al. Grain crop yield prediction using machine learning based on UAV remote sensing: A systematic literature review. Drones. 8, https://doi.org/10.3390/drones8100559 (2024).
Fang, Y., Kuang, Z., Wang, H., Lin, S. & Liu, A. Minimizing energy consumption of collaborative deployment and task offloading in two-tier UAV edge computing networks. J. Syst. Archit. 103511 (2025).
Wu, Y., Mu, X., Shi, H. & Hou, M. An object detection model AAPW-yolo for UAV remote sensing images based on adaptive convolution and reconstructed feature fusion. Sci. Rep.15, 16214 (2025).
Ao, T. et al. Energy-efficient multi-uavs cooperative trajectory optimization for communication coverage: An madrl approach. Remote Sens.15, https://doi.org/10.3390/rs15020429 (2023).
Westheider, J., Rückin, J. & Popović, M. Multi-UAV adaptive path planning using deep reinforcement learning. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 649–656. https://doi.org/10.1109/IROS55552.2023.10342516 (2023).
Fu, H. et al. A hierarchical path planning framework of plant protection uav based on the improved d3qn algorithm and remote sensing image. Remote Sens.17, https://doi.org/10.3390/rs17152704 (2025).
Zhang, G. et al. Spiking neural networks in intelligent edge computing. IEEE Consum. Electron. Mag.14, 66–75. https://doi.org/10.1109/MCE.2024.3506502 (2025).
Huang, C.-H., Chen, W.-T., Chang, Y.-C. & Wu, K.-T. An edge and trustworthy AI UAV system with self-adaptivity and hyperspectral imaging for air quality monitoring. IEEE Internet Things J.11, 32572–32584 (2024).
Shan, J., Jiang, W., Huang, Y., Yuan, D. & Liu, Y. Unmanned aerial vehicle (UAV)-based pavement image stitching without occlusion, crack semantic segmentation, and quantification. IEEE Trans. Intell. Transport. Syst. (2024).
Yuan, Y. et al. Edge-cloud collaborative UAV object detection: Edge-embedded lightweight algorithm design and task offloading using fuzzy neural network. IEEE Trans. Cloud Comput.12, 306–318 (2024).
Koubaa, A., Ammar, A., Abdelkader, M., Alhabashi, Y. & Ghouti, L. Aero: Ai-enabled remote sensing observation with onboard edge computing in uavs. Remote Sens.15, https://doi.org/10.3390/rs15071873 (2023).
Han, Y., Duan, B., Guan, R., Yang, G. & Zhen, Z. Luffd-yolo: A lightweight model for UAV remote sensing forest fire detection based on attention mechanism and multi-level feature fusion. Remote Sens.16, https://doi.org/10.3390/rs16122177 (2024).
Zhou, S., Zhou, H. & Qian, L. A multi-scale small object detection algorithm SMA-yolo for UAV remote sensing images. Sci. Rep.15, 9255 (2025).
Yang, S. et al. Wheat yield prediction using machine learning method based on UAV remote sensing data. Drones. 8, https://doi.org/10.3390/drones8070284 (2024).
Duan, Z., Liu, J., Ling, X., Zhang, J. & Liu, Z. Ernet: A rapid road crack detection method using low-altitude UAV remote sensing images. Remote Sens.16, https://doi.org/10.3390/rs16101741 (2024).
Oubbati, O. S., Alotaibi, J., Alromithy, F., Atiquzzaman, M. & Altimania, M. R. A UAV-UGV cooperative system: Patrolling and energy management for urban monitoring. IEEE Trans. Veh. Technol.74, 13521–13536. https://doi.org/10.1109/TVT.2025.3563971 (2025).
Alotaibi, J., Oubbati, O. S., Atiquzzaman, M., Alromithy, F. & Altimania, M. R. Optimizing disaster response with UAV-mounted RIS and hap-enabled edge computing in 6g networks. J. Netw. Comput. Appl. 104213 (2025).
Xu, H. et al. Edge computing resource allocation for unmanned aerial vehicle assisted mobile network with blockchain applications. IEEE Trans. Wirel. Commun.20, 3107–3121 (2021).
Gao, X., Zhu, X. & Zhai, L. Aoi-sensitive data collection in multi-UAV-assisted wireless sensor networks. IEEE Trans. Wirel. Commun.22, 5185–5197. https://doi.org/10.1109/TWC.2022.3232366 (2023).
Wan, P., Xu, G., Chen, J. & Zhou, Y. Deep reinforcement learning enabled multi-UAV scheduling for disaster data collection with time-varying value. IEEE Trans. Intell. Transp. Syst.25, 6691–6702. https://doi.org/10.1109/TITS.2023.3345280 (2024).
Liao, Y. et al. Low-latency data computation of inland waterway USVS for RIS-assisted UAV MEC network. IEEE Internet Things J.11, 26713–26726. https://doi.org/10.1109/JIOT.2024.3387017 (2024).
Wang, B. et al. Aav-assisted joint mobile edge computing and data collection via matching-enabled deep reinforcement learning. IEEE Internet Things J.12, 19782–19800. https://doi.org/10.1109/JIOT.2025.3542025 (2025).
Raivi, A. M. & Moh, S. Jdaco: Joint data aggregation and computation offloading in UAV-enabled internet of things for post-disaster scenarios. IEEE Internet Things J.11, 16529–16544. https://doi.org/10.1109/JIOT.2024.3354950 (2024).
Huang, J., Zhang, M., Wan, J., Chen, Y. & Zhang, N. Joint data caching and computation offloading in UAV-assisted internet of vehicles via federated deep reinforcement learning. IEEE Trans. Veh. Technol.73, 17644–17656. https://doi.org/10.1109/TVT.2024.3429507 (2024).
Zhang, Y. et al. Joint trajectory and resource optimization for UAV and d2d-enabled heterogeneous edge computing networks. IEEE Trans. Veh. Technol.73, 13816–13827. https://doi.org/10.1109/TVT.2024.3397335 (2024).
Wang, Z., Du, J., Jiang, C., Ren, Y. & Zhang, X.-P. UAV-assisted target tracking and computation offloading in USV-based MEC networks. IEEE Trans. Mob. Comput.23, 11389–11405. https://doi.org/10.1109/TMC.2024.3396121 (2024).
Oubbati, O. S., Chaib, N., Lakas, A. & Bitam, S. On-demand routing for urban vanets using cooperating UAVS. In 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT), 108–113 (IEEE, 2018).
Shao, R., Du, C., Chen, H. & Li, J. Sunet: Change detection for heterogeneous remote sensing images from satellite and UAV using a dual-channel fully convolution network. Remote Sens.13, 3750 (2021).