Home | U.S. Department of Labor. (n.d.). accessed March 9, (2024). https://www.dol.gov/
Statistics -. Work-related fatal injuries in Great Britain, (n.d.). accessed March 9, (2024). https://www.hse.gov.uk/statistics/fatals.htm
Gholamizadeh, K., Tapak, L., Mohammadfam, I. & Soltanzadeh, A. Investigating the work-related accidents in iran: analyzing and comparing the factors associated with the duration of absence from work. Iran. Rehabilitation J. 20, 589–600. https://doi.org/10.32598/IRJ.20.4.1739.1 (2022).
Moradinazar, M., Kurd, N., Farhadi, R., Amee, V. & Najafi, F. Epidemiology of work-related injuries among construction workers of Ilam (Western iran) during 2006–2009. Iran. Red Crescent Med. J. 15 https://doi.org/10.5812/IRCMJ.8011 (2013).
Hinze, J. & Wilson, G. Moving toward a Zero Injury Objective, J. Constr. Eng. Manag. 126, 399–403. (2000). https://doi.org/10.1061/(ASCE)0733-9364(2000)126:5(399).
Kineber, A. F. et al. Revolutionizing construction: A cutting-edge decision-making model for artificial intelligence implementation in sustainable Building projects. Heliyon 10, e37078. https://doi.org/10.1016/J.HELIYON.2024.E37078 (2024).
Abioye, S. O. et al. Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. J. Building Eng. 44, 103299. https://doi.org/10.1016/J.JOBE.2021.103299 (2021).
Alam Bhuiyan, M. M. & Hammad, A. A hybrid multi-criteria decision support system for selecting the most sustainable structural material for a multistory building construction, Sustainability, 15, 3128 15. (2023). https://doi.org/10.3390/SU15043128
Waqar, A. et al. Success of Implementing Cloud Computing for Smart Development in Small Construction Projects, Applied Sciences 13, 5713 13. (2023). https://doi.org/10.3390/APP13095713
Fazil, A. Z., Gomes, P. I. A. & Sandamal, R. M. K. Applicability of machine learning techniques to analyze microplastic transportation in open channels with different hydro-environmental factors. Environ. Pollut. 357 https://doi.org/10.1016/J.ENVPOL.2024.124389 (2024).
Zhong, B., Pan, X., Love, P. E. D., Sun, J. & Tao, C. Hazard analysis: A deep learning and text mining framework for accident prevention. Adv. Eng. Inform. 46, 101152. https://doi.org/10.1016/J.AEI.2020.101152 (2020).
Kannan, R., Abdul Halim, H. A., Ramakrishnan, K., Ismail, S. & Wijaya, D. R. Machine learning approach for predicting production delays: a quarry company case study. J. Big Data. 9, 1–12. https://doi.org/10.1186/S40537-022-00644-W/TABLES/3 (2022).
Samy, S. S. et al. Adoption of machine learning algorithm for predicting the length of stay of patients (construction workers) during COVID pandemic. Int. J. Inform. Technol. (Singapore). 15, 2613–2621. https://doi.org/10.1007/S41870-023-01296-6/FIGURES/15 (2023).
Bzdok, D. Classical statistics and statistical learning in imaging neuroscience. Front. Neurosci. 11 https://doi.org/10.3389/FNINS.2017.00543 (2017).
Bzdok, D., Altman, N. & Krzywinski, M. Points of significance: statistics versus machine learning. Nat. Methods. 15, 233–234. https://doi.org/10.1038/NMETH.4642 (2018).
Choi, J., Gu, B., Chin, S. & Lee, J. S. Machine learning predictive model based on National data for fatal accidents of construction workers. Autom. Constr. 110, 102974. https://doi.org/10.1016/J.AUTCON.2019.102974 (2020).
Mohammed, J. & Mahmud, M. J. Selection of a machine learning algorithm for OSHA fatalities, 2020 IEEE Technology and Engineering Management Conference, TEMSCON (2020). (2020) https://doi.org/10.1109/TEMSCON47658.2020.9140142
Assaad, R. & El-adaway, I. H. Determining Critical Combinations of Safety Fatality Causes Using Spectral Clustering and Computational Data Mining Algorithms, J. Constr. Eng. Manag 147 04021035. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002040. (2021).
Baker, H., Hallowell, M. R. & Tixier, A. J. P. AI-based prediction of independent construction safety outcomes from universal attributes. Autom. Constr. 118, 103146. https://doi.org/10.1016/J.AUTCON.2020.103146 (2020).
Kang, K. & Ryu, H. Predicting types of occupational accidents at construction sites in Korea using random forest model. Saf. Sci. 120, 226–236. https://doi.org/10.1016/J.SSCI.2019.06.034 (2019).
Kale, Ö. A. & Baradan, S. Identifying factors that contribute to severity of construction injuries using logistic regression model. Teknik Dergi. 31, 9919–9940. https://doi.org/10.18400/TEKDERG.470633 (2020).
IIF Home : U.S. Bureau of Labor Statistics, (n.d.). (2024). https://www.bls.gov/iif/home.htm
Zhu, J. et al. Developing predictive models of construction fatality characteristics using machine learning. Saf. Sci. 164, 106149. https://doi.org/10.1016/J.SSCI.2023.106149 (2023).
Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. Synthetic minority Over-sampling technique. J. Artif. Intell. Res. 16, 321–357. https://doi.org/10.1613/JAIR.953 (2002).
Seger, C. An investigation of categorical variable encoding techniques in machine learning: binary versus one-hot and feature hashing, Degree Project Technology (2018). https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237426 (accessed April 22, 2024).
Koc, K., Ekmekcioğlu, Ö. & Gurgun, A. P. Integrating feature engineering, genetic algorithm and tree-based machine learning methods to predict the post-accident disability status of construction workers. Autom. Constr. 131, 103896. https://doi.org/10.1016/J.AUTCON.2021.103896 (2021).
Cerda, P., Varoquaux, G. & Kégl, B. Similarity encoding for learning with dirty categorical variables. Mach. Learn. 107, 1477–1494. https://doi.org/10.1007/S10994-018-5724-2/TABLES/3 (2018).
Le Chan, J. Y. et al. Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review, Mathematics 10, 1283 10. (2022). https://doi.org/10.3390/MATH10081283
Aldhari, I. et al. Severity Prediction of Highway Crashes in Saudi Arabia Using Machine Learning Techniques, Applied Sciences, 13, 233. (2023). https://doi.org/10.3390/APP13010233
Pourroostaei Ardakani, S. et al. Road Car Accident Prediction Using a Machine-Learning-Enabled Data Analysis, Sustainability, 15, 5939 15. (2023). https://doi.org/10.3390/SU15075939
Ahmed, S., Hossain, M. A., Ray, S. K., Bhuiyan, M. M. I. & Sabuj, S. R. A study on road accident prediction and contributing factors using explainable machine learning models: analysis and performance. Transp. Res. Interdiscip Perspect. 19, 100814. https://doi.org/10.1016/J.TRIP.2023.100814 (2023).
Sufian, M. A., Varadarajan, J. & Niu, M. Enhancing prediction and analysis of UK road traffic accident severity using AI: integration of machine learning, econometric techniques, and time series forecasting in public health research. Heliyon 10, e28547. https://doi.org/10.1016/J.HELIYON.2024.E28547 (2024).
Han, M. et al. Reducing overfitting risk in Small-Sample learning with ANN: A case of predicting graduate admission probability. Commun. Comput. Inform. Sci. 2058 CCIS, 404–419. https://doi.org/10.1007/978-981-97-1277-9_31 (2024).
Uddin, S., Haque, I., Lu, H., Moni, M. A. & Gide, E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci. Rep. 12, 1–11. https://doi.org/10.1038/S41598-022-10358- (2022). X;SUBJMETA=1041,639,692,699,705;KWRD=APPLIED+MATHEMATICS,DISEASES.
Guo, G., Wang, H., Bell, D., Bi, Y. & Greer, K. KNN Model-Based approach in classification. Lecture Notes Comput. Sci. (Including Subser. Lecture Notes Artif. Intell. Lecture Notes Bioinformatics). 2888, 986–996. https://doi.org/10.1007/978-3-540-39964-3_62 (2003).
Zhang, Z. Introduction to machine learning: k-nearest neighbors. Ann. Transl Med. 4, 218–218. https://doi.org/10.21037/ATM.2016.03.37 (2016).
Guido, R., Ferrisi, S., Lofaro, D. & Conforti, D. An Overview on the Advancements of Support Vector Machine Models in Healthcare Applications: A Review, Information, 15, 235. (2024). https://doi.org/10.3390/INFO15040235
Amaya-Tejera, N., Gamarra, M., Vélez, J. I. & Zurek, E. A distance-based kernel for classification via support vector machines. Front. Artif. Intell. 7, 1287875. https://doi.org/10.3389/FRAI.2024.1287875/BIBTEX (2024).
Abd, A. M. & Abd, S. M. Modelling the strength of lightweight foamed concrete using support vector machine (SVM), case studies in construction materials, 6, 8–15. (2017). https://doi.org/10.1016/J.CSCM.2016.11.002
Pereira, H. C., Bastos, A., Seco, A. & Antunes, F. Decision trees applied to injury severity in road accidents with one victim: focus on vulnerable users. Proc. Institution Civil Eng. – Municipal Eng. 177, 38–49. https://doi.org/10.1680/JMUEN.23.00034 (2024).
Kanyongo, W. & Ezugwu, A. E. Feature selection and importance of predictors of non-communicable diseases medication adherence from machine learning research perspectives. Inf. Med. Unlocked. 38, 101232. https://doi.org/10.1016/J.IMU.2023.101232 (2023).
Mistikoglu, G. et al. Decision tree analysis of construction fall accidents involving roofers. Expert Syst. Appl. 42, 2256–2263. https://doi.org/10.1016/J.ESWA.2014.10.009 (2015).
Warren, C. et al. Using a decision tree learning algorithm to classify injury status in adolescent males following return-to-activity criteria. Gait Posture. 81, 383–384. https://doi.org/10.1016/J.GAITPOST.2020.08.091 (2020).
Sun, Z. et al. An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Syst. Appl. 237, 121549. https://doi.org/10.1016/J.ESWA.2023.121549 (2024).
Donick, D. & Lera, S. C. Uncovering feature interdependencies in high-noise environments with Stepwise Lookahead decision forests. Sci. Rep. 11, 1–12. https://doi.org/10.1038/S41598-021-88571-3;SUBJMETA=1042,1046,117,639,705;KWRD=COMPUTATIONAL+SCIENCE,COMPUTER+SCIENCE,MATHEMATICS+AND+COMPUTING,SCIENTIFIC+DATA (2021).
Li, H., Lin, J., Lei, X. & Wei, T. Compressive strength prediction of basalt fiber reinforced concrete via random forest algorithm. Mater. Today Commun. 30, 103117. https://doi.org/10.1016/J.MTCOMM.2021.103117 (2022).
Sibindi, R., Mwangi, R. W. & Waititu, A. G. A boosting ensemble learning based hybrid light gradient boosting machine and extreme gradient boosting model for predicting house prices. Eng. Rep. 5, e12599. https://doi.org/10.1002/ENG2.12599 (2023).
Chakraborty, D., Elhegazy, H., Elzarka, H. & Gutierrez, L. A novel construction cost prediction model using hybrid natural and light gradient boosting. Adv. Eng. Inform. 46, 101201. https://doi.org/10.1016/J.AEI.2020.101201 (2020).
Lv, F. et al. An improved extreme gradient boosting approach to vehicle speed prediction for construction simulation of earthwork. Autom. Constr. 119, 103351. https://doi.org/10.1016/J.AUTCON.2020.103351 (2020).
Shehadeh, A., Alshboul, O., Al Mamlook, R. E. & Hamedat, O. Machine learning models for predicting the residual value of heavy construction equipment: an evaluation of modified decision tree, LightGBM, and XGBoost regression. Autom. Constr. 129, 103827. https://doi.org/10.1016/J.AUTCON.2021.103827 (2021).
Han, J., Shu, K. & Wang, Z. Predicting energy use in construction using extreme gradient boosting. PeerJ Comput. Sci. 9, e1500. https://doi.org/10.7717/PEERJ-CS.1500/SUPP-1 (2023).
Parsa, A. B., Movahedi, A., Taghipour, H. & Derrible, S. Kouros) Mohammadian, toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. Accid. Anal. Prev. 136, 105405. https://doi.org/10.1016/J.AAP.2019.105405 (2020).
Lundberg, S. M. et al. From local explanations to global Understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67. https://doi.org/10.1038/S42256-019-0138-9 (2020). ;SUBJMETA=117,308,639,692,705,794;KWRD=COMPUTER+SCIENCE,MEDICAL+RESEARCH,SOFTWARE.
Štrumbelj, E. & Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41, 647–665. https://doi.org/10.1007/S10115-013-0679-X/METRICS (2014).
Taiwo, R., Yussif, A. M., Ben Seghier, M. E. A. & Zayed, T. Explainable ensemble models for predicting wall thickness loss of water pipes. Ain Shams Eng. J. 15, 102630. https://doi.org/10.1016/J.ASEJ.2024.102630 (2024).
Taiwo, R. et al. An Integrated Approach of Simulation and Regression Analysis for Assessing Productivity in Modular Integrated Construction Projects, Buildings, 12, 12 (2022). https://doi.org/10.3390/BUILDINGS12112018