• Zhang, G. et al. Behavior of prestressed concrete box bridge girders under hydrocarbon fire condition. Proc. Eng. 210, 449–455 (2017).


    Google Scholar
     

  • Robertson, L., et al., Post-fire investigations of prestressed concrete structures. Response of structures under extreme loading (PROTECT 2015) (2015).

  • Zhang, W., Liu, D. & Cao, K. Prediction of concrete compressive strength using support vector machine regression and non-destructive testing. Case Stud. Constr. Mater 21, e03416 (2024).


    Google Scholar
     

  • Bentz, D. P. & Snyder, K. A. Protected paste volume in concrete—Extension to internal curing using saturated lightweight fine aggregate. Cem. Concr. Res. 29(11), 1863–1867 (1999).


    Google Scholar
     

  • Bruce, S., et al. Deterioration of prestressed concrete bridge beams. Land Transport New Zealand Wellington, New Zealand (2008).

  • Imperatore, S. et al. Corrosion effects on the flexural performance of prestressed reinforced concrete beams. Constr. Build. Mater. 411, 134581 (2024).


    Google Scholar
     

  • Alqam, M., Alkhairi, F. & Naaman, A. An improved methodology for the prediction of the stress at ultimate in unbonded internal and external steel tendons. Arab. J. Sci. Eng. 45, 7915–7954 (2020).


    Google Scholar
     

  • Dall’Asta, A., Ragni, L. & Zona, A. Simplified method for failure analysis of concrete beams prestressed with external tendons. J. Struct. Eng. 133(1), 121–131 (2007).


    Google Scholar
     

  • Pfeiffer, O. P. et al. Bayesian design of concrete with amortized Gaussian processes and multi-objective optimization. Cem. Concr. Res. 177, 107406 (2024).


    Google Scholar
     

  • Xue, J., Shao, J. F. & Burlion, N. Estimation of constituent properties of concrete materials with an artificial neural network based method. Cem. Concr. Res. 150, 106614 (2021).


    Google Scholar
     

  • Oyebisi, S. & Alomayri, T. Artificial intelligence-based prediction of strengths of slag-ash-based geopolymer concrete using deep neural networks. Constr. Build. Mater. 400, 132606 (2023).


    Google Scholar
     

  • Ekanayake, I., Meddage, D. & Rathnayake, U. A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP). Case Stud. Constr. Mater. 16, e01059 (2022).


    Google Scholar
     

  • Nunez, I. & Nehdi, M. L. Machine learning prediction of carbonation depth in recycled aggregate concrete incorporating SCMs. Constr. Build. Mater. 287, 123027 (2021).


    Google Scholar
     

  • Keshtegar, B. et al. Hybrid regression and machine learning model for predicting ultimate condition of FRP-confined concrete. Compos. Struct. 262, 113644 (2021).


    Google Scholar
     

  • Khan, M. A. et al. Geopolymer concrete compressive strength via artificial neural network, adaptive neuro fuzzy interface system, and gene expression programming with K-fold cross validation. Front. Mater. 8, 621163 (2021).


    Google Scholar
     

  • Yaseen, Z. M. et al. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv. Eng. Softw. 115, 112–125 (2018).


    Google Scholar
     

  • Feng, D.-C. et al. Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements. Eng. Struct. 235, 111979 (2021).


    Google Scholar
     

  • Wang, X. Y., Ma, X. R. & Chen, S. Z. Uncertainty-aware fuzzy knowledge embedding method for generalized structural performance prediction. Comput. Aid. Civ. Infrast. Eng. 40(17), 2546–2560 (2025).


    Google Scholar
     

  • Malhotra, K., Mishra, D. & Tumrate, C. S. Prediction of concrete compressive strength employing machine learning techniques. Mater. Today: Proc. https://doi.org/10.1016/j.matpr.2023.05.717 (2023).


    Google Scholar
     

  • Zhang, C. et al. Compressive strength and sensitivity analysis of fly ash composite foam concrete: Efficient machine learning approach. Adv. Eng. Softw. 192, 103634 (2024).


    Google Scholar
     

  • Zeng, S. et al. Prediction of compressive strength of FRP-confined concrete using machine learning: A novel synthetic data driven framework. J. Build. Eng. 94, 109918 (2024).


    Google Scholar
     

  • Adankon, M. M. & Cheriet, M. Model selection for the LS-SVM Application to handwriting recognition. Pattern Recogn. 42(12), 3264–3270 (2009).


    Google Scholar
     

  • Bengio, Y. Gradient-based optimization of hyperparameters. Neural Comput. 12(8), 1889–1900 (2000).


    Google Scholar
     

  • Tran, N. et al. Hyper-parameter optimization in classification: To-do or not-to-do. Pattern Recogn. 103, 107245 (2020).


    Google Scholar
     

  • Jiang, X. et al. Cascaded subpatch networks for effective CNNs. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 2684–2694 (2017).


    Google Scholar
     

  • Larochelle, H., et al. An empirical evaluation of deep architectures on problems with many factors of variation. in Proceedings of the 24th International Conference on Machine learning. (2007).

  • Mockus, J. On Bayesian methods for seeking the extremum. in Proceedings of the IFIP Technical Conference. (1974).

  • Kusumaputri, F. H., Arifin, A. S. & IEEE. Anomaly detection based on NSL-KDD using XGBoost with Optuna tuning. in 7th International Conference on Business and Industrial Research (ICBIR). Electr Network (2022).

  • Li, Y. et al. Optuna-DFNN: An Optuna framework driven deep fuzzy neural network for predicting sintering performance in big data. Alex. Eng. J. 97, 100–113 (2024).


    Google Scholar
     

  • Akiba, T., et al. Optuna: A Next-generation Hyperparameter Optimization Framework. in 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD). Anchorage, AK (2019).

  • Arrieta, A. B. et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fus. 58, 82–115 (2020).


    Google Scholar
     

  • Von Eschenbach, W. J. Transparency and the black box problem: Why we do not trust AI. Philos. Technol. 34(4), 1607–1622 (2021).


    Google Scholar
     

  • Belle, V. & Papantonis, I. Principles and practice of explainable machine learning. Front. Big Data 4, 688969 (2021).


    Google Scholar
     

  • De, T. et al. Explainable AI: A hybrid approach to generate human-interpretable explanation for deep learning prediction. Proc. Comput. Sci. 168, 40–48 (2020).


    Google Scholar
     

  • Roscher, R. et al. Explainable machine learning for scientific insights and discoveries. IEEE Access 8, 42200–42216 (2020).


    Google Scholar
     

  • Shah, S. F. A. et al. Compressive strength prediction of one-part alkali activated material enabled by interpretable machine learning. Constr. Build. Mater. 360, 129534 (2022).


    Google Scholar
     

  • Srinivas, P. & Katarya, R. hyOPTXg: OPTUNA hyper-parameter optimization framework for predicting cardiovascular disease using XGBoost. Biomed. Signal Process. Control 73, 103456 (2022).


    Google Scholar
     

  • Fu, B. et al. Quantifying scattering characteristics of mangrove species from Optuna-based optimal machine learning classification using multi-scale feature selection and SAR image time series. Int. J. Appl. Earth Obs. Geoinf. 122, 103446 (2023).


    Google Scholar
     

  • Morales Rodríguez, D., Pegalajar Cuellar, M., & Morales, D. P. On the fusion of soft-decision-trees and concept-based models. Available at SSRN 4402768 (2023).

  • Wang, Y., Zhang, J., & Zhang. L. Theory of decision tree models in classification problems. In International Conference on Statistics, Applied Mathematics, and Computing Science (CSAMCS 2021). SPIE (2022).

  • Souza, V. F. et al. Decision trees with short explainable rules. Adv. Neural. Inf. Process. Syst. 35, 12365–12379 (2022).


    Google Scholar
     

  • Audemard, G., et al., On the explanatory power of decision trees. Preprint at arXiv:2108.05266 (2021).

  • Quinlan, J. R. C4.5: Programs for Machine Learning (Elsevier, 2014).


    Google Scholar
     

  • Nie, B., et al. Improved algorithm of C4. 5 decision tree on the arithmetic average optimal selection classification attribute. in 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE (2017).

  • Gupta, P., Jindal, A., & Sengupta, D. Guided Random Forest and its application to data approximation. Preprint at arXiv:1909.00659 (2019).

  • Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 13(1), 1063–1095 (2012).


    Google Scholar
     

  • Chen, T., & Guestrin. C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016).

  • Mitchell, R., et al. Xgboost: Scalable GPU accelerated learning. Preprint at arXiv:1806.11248 (2018).

  • Jia, H., Qiao, G. & Han, P. Machine learning algorithms in the environmental corrosion evaluation of reinforced concrete structures—A review. Cement Concr. Compos. 133, 104725 (2022).


    Google Scholar
     

  • Akiba, T., et al. Optuna: A next-generation hyperparameter optimization framework. in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019).

  • Liu, D., Database for prestressed concrete beam flexural behavior test. Mendeley Data. V1. (2023)

  • Muhammad, B. R., Sarsam, K. F. & Jaber, H. T. Size effect on the shear strength of reinforced concrete beams. Eng. Technol. J. 39(12), 1960 (2021).


    Google Scholar
     

  • Li, Y. et al. Experimental study on the correlation between crack width and crack depth of RC beams. Materials 14(20), 5950 (2021).


    Google Scholar
     

  • Hu, X. et al. Experimental study on crack width of HRB600 grade high-strength steel bar reinforced concrete beams. Buildings 14(1), 10 (2023).


    Google Scholar
     

  • Goszczyńska, B., Trąmpczyński, W. & Tworzewska, J. Analysis of crack width development in reinforced concrete beams. Materials 14(11), 3043 (2021).


    Google Scholar
     

  • Sun, H. Q. & Ding, J. Research on influences of the coarse aggregate size on the cracks of the reinforced beam. Adv. Mater. Res. 503, 832–836 (2012).


    Google Scholar
     

  • Zhou, Z. et al. Probabilistic rutting model using NGBoost and SHAP: Incorporating other performance indicators. Constr. Build. Mater. 438, 137052 (2024).


    Google Scholar
     



  • Source link