• Truong-Hong, L., Lindenbergh, R. (2022). Extracting structural components of concrete buildings from laser scanning point clouds from construction sites. Advanced Engineering Informatics. 51. https://doi.org/10.1016/j.aei.2021.101490

  • Maalek, R., Lichti, D. D., & Maalek, S. (2021). Towards automatic digital documentation and progress reporting of mechanical construction pipes using smartphones. Automation in Construction, 127, Article 103735. https://doi.org/10.1016/j.autcon.2021.103735

    Article 

    Google Scholar
     

  • Maalek, R., Lichti, D. D., Ruwanpura, J. Y. (2019). Automatic recognition of common structural elements from point clouds for automated progress monitoring and dimensional quality control in reinforced concrete construction. Remote Sensing (Basel) 11. https://doi.org/10.3390/rs11091102

  • Maalek, R., & Maalek, S. (2023). Automatic recognition and digital documentation of cultural heritage hemispherical domes using images. Journal on Computing and Cultural Heritage, 16, 1–21. https://doi.org/10.1145/3528412

    Article 

    Google Scholar
     

  • Maalek, R., & Maalek, S. (2023). Repurposing existing skeletal spatial structure (SkS) system designs using the field information modeling (FIM) framework for generative decision-support in future construction projects. Science and Reports, 13, 19591. https://doi.org/10.1038/s41598-023-46523-z

    Article 

    Google Scholar
     

  • Zhang, Q., Yang, S. (2021). Evaluating the sustainability of big data centers using the analytic network process and fuzzy TOPSIS. Environmental Science and Pollution Research. 28. https://doi.org/10.1007/s11356-020-11443-2

  • Hammond, G., Jones, C. (2011). Embodied carbon: The inventory of carbon and energy (ICE). A BSRIA Guide.


    Google Scholar
     

  • Jones, C., Hammond, G. (2019). Inventory of carbon and energy (ICE database).


    Google Scholar
     

  • Kensek, K. M. (2014). Building information modeling. Building Information Modeling 1–285. https://doi.org/10.4324/9781315797076

  • Gandomi, A., Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management 35. https://doi.org/10.1016/j.ijinfomgt.2014.10.007

  • Zhang, X., Hu, Y., Xie, K., Zhang, W., Su, L., Liu, M. (2015). An evolutionary trend reversion model for stock trading rule discovery. Knowledge Based Systems 79. https://doi.org/10.1016/j.knosys.2014.08.010

  • Microsoft Azure: What is Big Data Analytics?. https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-big-data-analytics. Last accessed 24 February 2024.

  • Schonberger, J. L., Frahm, J. M. (2016). Structure-from-motion revisited. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2016.445

  • Mourikis, A. I., Roumeliotis, S. I. (2004). Analysis of positioning uncertainty in simultaneous localization and mapping (SLAM). In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/iros.2004.1389322

  • Maalek, R. (2021). Field information modeling (FIM)TM: best practices using point clouds. Remote Sensing (Basel) 13, 967. https://doi.org/10.3390/rs13050967

  • Maalek, R., Lichti, D. D. (2021). Automated calibration of smartphone cameras for 3D reconstruction of mechanical pipes. Photogrammetric Record 36. https://doi.org/10.1111/phor.12364

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article 

    Google Scholar
     

  • Khoshelham, K. (2016). Closed-form solutions for estimating a rigid motion from plane correspondences extracted from point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 78–91. https://doi.org/10.1016/j.isprsjprs.2016.01.010

    Article 

    Google Scholar
     

  • Golparvar-Fard, M., Peña-Mora, F., & Savarese, S. (2015). Automated progress monitoring using unordered daily construction photographs and IFC-based building information models. Journal of Computing in Civil Engineering, 29, 04014025. https://doi.org/10.1061/(asce)cp.1943-5487.0000205

    Article 

    Google Scholar
     

  • Maalek, R., Yavan, F. (2023). Automatic alignment of point clouds onto building information model (BIM) in regular rectangular buildings. In Proceedings of 3rd International Civil Engineering and Architecture Congress (ICEARC’23), (pp. 318–329). Golden light publishing, Trabzon.


    Google Scholar
     

  • Yang, J., Li, H., Campbell, D., Jia, Y. (2016). Go-ICP: a globally optimal solution to 3D ICP point-set registration. In IEEE Transactions on Pattern Analysis and Machine Intelligence (Vol. 38). https://doi.org/10.1109/TPAMI.2015.2513405

  • Austern, G., Bloch, T., & Abulafia, Y. (2024). Incorporating context into BIM-derived data—leveraging graph neural networks for building element classification. Buildings, 14, 527. https://doi.org/10.3390/BUILDINGS14020527

    Article 

    Google Scholar
     

  • Maalek, R., Lichti, D. D., Ruwanpura, J. Y. (2018). Robust segmentation of planar and linear features of terrestrial laser scanner point clouds acquired from construction sites. Sensors (Switzerland) 18. https://doi.org/10.3390/s18030819

  • Shi, B. Q., Liang, J., Liu, Q. (2011). Adaptive simplification of point cloud using k-means clustering. CAD Computer Aided Design 43. https://doi.org/10.1016/j.cad.2011.04.001

  • Maalek, R., Lichti, D. D., Walker, R., Bhavnani, A., & Ruwanpura, J. Y. (2019). Extraction of pipes and flanges from point clouds for automated verification of pre-fabricated modules in oil and gas refinery projects. Automation in Construction, 103, 150–167. https://doi.org/10.1016/j.autcon.2019.03.013

    Article 

    Google Scholar
     

  • Dittrich, A., Weinmann, M., Hinz, S. (2017). Analytical and numerical investigations on the accuracy and robustness of geometric features extracted from 3D point cloud data. ISPRS Journal of Photogrammetry and Remote Sensing 126. https://doi.org/10.1016/j.isprsjprs.2017.02.012

  • Park, J., Kim, J., Lee, D., Jeong, K., Lee, J., Kim, H., Hong, T. (2022). Deep learning–based automation of scan-to-BIM with modeling objects from occluded point clouds. Journal of Management in Engineering 38. https://doi.org/10.1061/(asce)me.1943-5479.0001055

  • Sivarajah, U., Kamal, M. M., Irani, Z., Weerakkody, V. (2017) Critical analysis of Big Data challenges and analytical methods. Journal of Business Research 70. https://doi.org/10.1016/j.jbusres.2016.08.001

  • Last Planner®. In Handbook for construction planning and scheduling (2014).
    https://doi.org/10.1002/9781118838167.ch7

  • Little, R. J. A., Rubin, D. B. (2014). Statistical analysis with missing data. https://doi.org/10.1002/9781119013563

  • Shen, J., Shafiq, M. O. (2020). Short-term stock market price trend prediction using a comprehensive deep learning system. Journal of Big Data 7. https://doi.org/10.1186/s40537-020-00333-6

  • Scott, W. R., Roth, G., Rivest, J. F. (2001). View planning with a registration constraint. In Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM. https://doi.org/10.1109/IM.2001.924419

  • Lucas, A. (2014). Ising formulations of many NP problems. Frontiers of Physics, 2, 1–14. https://doi.org/10.3389/fphy.2014.00005

    Article 

    Google Scholar
     

  • Palubeckis, G. (2006). Iterated tabu search for the unconstrained binary quadratic optimization problem. Informatica, 17. https://doi.org/10.15388/informatica.2006.138



  • Source link