Westermann, W. L. The development of the irrigation system of Egypt. Class. Philol. 14, 158–164, https://doi.org/10.1086/360222 (1919).
Nienhuis, J. H., Cox, J. R., O’Dell, J., Edmonds, D. A. & Scussolini, P. A global open-source database of flood-protection levees on river deltas (openDELvE). Nat. Hazards Earth Syst. Sci. 22(12), 1–16, https://doi.org/10.5194/nhess-2021-291 (2021).
National Levee Database (NLD) US Army Corps of Engineers, https://levees.sec.usace.army.mil/#/ (2025).
Rijkswaterstaat Ministry of Infrastructure and Wate Management Data https://data.overheid.nl/datasets?facet_theme%5B0%5D=http%3A//standaarden.overheid.nl/owms/terms/Ruimte_en_infrastructuur (2025).
Barbetta, S., Camici, S., Maccioni, P. & Moramarco, T. National Levee Database: monitoring, vulnerability assessment and management in Italy. Proc. EGU General Assembly, Vienna, Austria, 12–17 (2015).
UK Environment Management Agency https://www.data.gov.uk/search?q=flood+defence+&filters%5Bpublisher%5D=&filters%5Btopic%5D=Environment&filters%5Bformat%5D=&sort=best
Wallace, T. Crawford-Flett, K., Wilson, M. & Logan, T. A framework for modelling the probability of flooding under levee breaching. Journal of Flood Risk Management. 17(3), https://doi.org/10.1111/jfr3.12988 (2024).
Tobin, G. A. The levee love affair: a stormy relationship? 1. JAWRA Journal of the American Water Resources Association 31(3), 359–367 (1995).
Heine, R. A. & Pinter, N. Levee effects upon flood levels: an empirical assessment. Hydrological Processes 26(21), 3225–3240 (2012).
Ding, M. et al. Reversal of the levee effect towards sustainable floodplain management. Nature Sustainability 6(12), 1578–1586 (2023).
Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Climatic Change. 134, 387–401 (2016).
Hirabayashi et al. Global flood risk under climate change. Nature climate change. 3, 816–821 (2013).
Alfieri et al. Global projections of river flood risk in a warmer world. Earth’s Future. 5(2), https://doi.org/10.1002/2016EF000485 (2016).
Tourment et al. European and US Levees and Flood Defences Characteristics, Risks and Governance. EUCOLD Work Group on Levees and Flood Defences. (2018).
Hui, R., Jachens, E. & Lund, J. Risk-based planning analysis for a single levee. Water Resour. Res. 52, 2513–2528, https://doi.org/10.1002/2014WR016478 (2016).
U.S. Army Corps of Engineers Levee Portfolio Report. (U.S. Army Corps of Engineers, 2018).
American Society of Civil Engineers. 2021 Report Card for America’s Infrastructure. (ASCE, 2021).
Lehmkuhl, F. et al. Assessment of the 2021 summer flood in Central Europe. Environmental Sciences Europe. 34(107) (2022).
Domeneghetti, A., Vaccari, M., Bertolini, I. & Marchi, M. Testing empirical criteria for breach geometry estimation to recent embankment failure datasets. Proc., 5th Meeting of the European Working Group on Overflow and Overtopping Erosion. (2024).
Özer, I. E., van Damme, M. & Jonkman, N. Towards an international levee performance database (ILPD) and its use for macro-scale analysis of levee breaches and failures. Water. 12(1), 119 (2020).
Zomorodi, K. Empirical Equations for Levee Breach Parameters Based on Reliable International Data. Journal of Dam Safety. 21(2), 20–45 (2024).
Bowman, A. J. et al. Centrifuge modelling of embankment overtopping. Proc. 5th European Conference on Physical Modelling in Geotechnics. 1–7 (2024).
Briaud, J. L., Shafii, I., Chen, H. C. & Medina-Cetina, Z. Relationship between erodibility and properties of soils. NCHRP Report 915. Transportation Research Board, National Academies of Sciences, Engineering, and Medicine (2019).
Kakinuma, T. & Shimizu, Y. Large-scale experiment and numerical modelling of a riverine levee breach. Journal of Hydraulic Engineering. 140(9), 1–9 (2014).
Hanson, G. J., Temple, D. M., Hunt, S. L. & Tejral, R. Development and Characterization of Soil Material Parameters for Embankment Breach. Applied Engineering in Agriculture 27(4), 587–595 (2011).
Wu, W. Introduction to DLBreach – A Simplified Physically-Based Dam/Levee Breach Model. Version 2016.4. Clarkson University Technical Report (2016).
van Damme, M. An analytical process-based approach to predicting breach width in levees constructed from dilatant soils. Natural Hazards 101(1), 59–85 (2020).
Zhong, Q. M., Chen, S. S., Deng, Z. & Mei, S. A. Prediction of overtopping-induced breach process of cohesive dams. Journal of Geotechnical and Geoenvironmental Engineering. 145(5), 1–12 (2019).
Danka, J. & Zhang, L. M. Dike Failure Mechanisms and Breaching Parameters. Journal of Geotechincal and Geoenvironmental Engineering. 141(9). (2015).
Sills, G. L., Vroman, N. D., Wahl, R. E. & Schwanz, N. T. Overview of New Orleans Levee Failures: Lessons Learned and Their Impact on National Levee Design and Assessment. Journal of Geotechnical and Geoenvironmental Engineering. 135(5), 556–565 (2008).
Seed, R. B., Athanasopoulos-Zekkos, A., Cobos-Roa, D., Pestana, J. M. & Inamine, M. U.S. Levee and Flood Protection Engineering in the Wake of Hurricane Katrina. Proc. GeoCongress 2012. 1, 294–334 (2012).
U.S. Army Corps of Engineers Rock Island District. Levee Safety Program. https://www.mvr.usace.army.mil/missions/flood-risk-management/levee-safety-program/#:~:text=In%202006%2C%20the%20U.S.%20Army,the%20public%2C%20property%20and%20environment (2025).
Water Resources Development Act of 2007, Pub. L. No. 110–114, 121 Stat. 1041 (2007).
US Army Corps of Engineers. Levee Screening Tool Application Guide and Technical Reference Manual Version 3.8 (2015).
Flynn, S. G., Vahedifard, F. & Schaaf, D. M. A dataset of levee overtopping incidents. Proc., Geo-Extreme 2021: Infrastructure Resilience, Big Data, and Risk, 99–108. (2021).
O’Leary, T. M. & Schaaf, D. M. USACE Levee Overtopping Incidents and Failures. Proc. 5th Meeting of the European Working Group on Overflow and Overtopping Erosion. (2024).
Flynn, S., Zamanian, S., Vahedifard, F., Shafieezadeh, A. & Schaaf, D. Data-Driven Model for Estimating the Probability of Riverine Levee Breach Due to Overtopping. Journal of Geotechnical and Geoenvironmental Engineering. 148(3), 1–13 (2022).
U.S. Army Corps of Engineers. RiverGages.com: Water control and river conditions. USACE. https://rivergages.mvr.usace.army.mil/WaterControl/new/layout.cfm (Accessed April 1, 2025).
U.S. Geological Survey. National Water Information System: Real-time water data. USGS. https://waterdata.usgs.gov/nwis/rt (Accessed April 2, 2025).
National Oceanic and Atmospheric Administration. NOAA Water. NOAA https://water.noaa.gov/ (Accessed March 31, 2025).
Levee Safety Tool 2.0. US Army Corps of Engineers, https://lst2.sec.usace.army.mil/ (April 20, 2025).
Waterways Experiment Station (USACE). The Unified Soil Classification System. Technical Memorandum No. 3-357. (U.S. Army Corps of Engineers, 1953).
Flynn, S., Bowman, A. & Vahedifard, V. Quantitative Assessment of Levee Breach Widening and Time-Rate Volume Loss Using Historical Overtopping Events. Proc. GeoExtreme 2025, ASCE (2025).
Hanson, G. J., Robinson, K. M. & Cook, K. R. Prediction of headcut migration using a deterministic approach. Trans. ASAE 44, 525–531 (2001).
Flynn, S., Vahedifard, F. & Schaaf, D. LLID-OT v1.0. figshare. Dataset. https://doi.org/10.6084/m9.figshare.29932181 (2025).
Robbins, B. A. & Corcoran, M. K. Calculation of levee-breach widening rates. ERDC/GSL TR-22-8, U.S. Army Engineer Research and Development Center, (2022).
Hunt, S. L., Hanson, G. J., Cook, K. R. & Kadavy, K. C. Breach widening observations from earthen embankment tests. Trans. ASAE 48(3), 1115–1120 (2005).
Visser, J. P. Breach growth in sand-dikes. PhD thesis, Delft University of Technology, Netherlands (1998).
van Damme, M. Detachment of dilatant soil due to high hydraulic shear stresses explained. Journal of Hydraulic Research. 59(1), 51–60 (2021).