• Tedjopurnomo, D. A. et al. A survey on modern deep neural network for traffic prediction: trends, methods and challenges. IEEE Trans. Knowl. Data Eng. 34 (4), 1544–1561 (2020).


    Google Scholar
     

  • Santos, K., Dias, J. P. & Amado, C. A literature review of machine learning algorithms for crash injury severity prediction. J. Saf. Res. 80, 254–269 (2022).


    Google Scholar
     

  • WHO, W.H.O. Global status report on road safety 2023. [cited 13.12.2023; (2023). Available from: https://www.who.int/publications/i/item/9789240086517

  • Chen, S. et al. The global macroeconomic burden of road injuries: estimates and projections for 166 countries. Lancet Planet. Health. 3 (9), e390–e398 (2019).

    PubMed 

    Google Scholar
     

  • (TUİK). T.İ.K. Karayolu Trafik Kaza İstatistikleri,. 2023 [cited 5.012.2023; Available from,. 2023 [cited 5.012.2023; Available from: (2022). https://data.tuik.gov.tr/Bulten/Index?p=Karayolu-Trafik-Kaza-Istatistikleri-2022-49513

  • Wijnen, W. & Stipdonk, H. Social costs of road crashes: an international analysis. Accid. Anal. Prev. 94, 97–106 (2016).

    PubMed 

    Google Scholar
     

  • Shaik, M. E., Islam, M. M. & Hossain, Q. S. A review on neural network techniques for the prediction of road traffic accident severity. Asian Transp. Stud. 7, 100040 (2021).


    Google Scholar
     

  • Mannering, F. L., Shankar, V. & Bhat, C. R. Unobserved heterogeneity and the statistical analysis of highway accident data. Analytic Methods Accid. Res. 11, 1–16 (2016).


    Google Scholar
     

  • Ashraf, I. et al. Catastrophic factors involved in road accidents: underlying causes and descriptive analysis. PLoS One. 14 (10), e0223473 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gatarić, D. et al. Predicting road traffic Accidents—Artificial neural network approach. Algorithms 16 (5), 257 (2023).


    Google Scholar
     

  • Halim, Z. et al. Artificial intelligence techniques for driving safety and vehicle crash prediction. Artif. Intell. Rev. 46, 351–387 (2016).


    Google Scholar
     

  • Wang, Y. & Zhang, W. Analysis of roadway and environmental factors affecting traffic crash severities. Transp. Res. Procedia. 25, 2119–2125 (2017).


    Google Scholar
     

  • Pourroostaei Ardakani, S. et al. Road Car accident prediction using a Machine-Learning-Enabled data analysis. Sustainability 15 (7), 5939 (2023).


    Google Scholar
     

  • Chaabani, H. et al. A neural network approach to visibility range Estimation under foggy weather conditions. Procedia Comput. Sci. 113, 466–471 (2017).


    Google Scholar
     

  • Alkheder, S., Taamneh, M. & Taamneh, S. Severity prediction of traffic accident using an artificial neural network. J. Forecast. 36 (1), 100–108 (2017).

    MathSciNet 

    Google Scholar
     

  • Gu, Y., Qian, Z. S. & Chen, F. From Twitter to detector: Real-time traffic incident detection using social media data. Transp. Res. Part. C: Emerg. Technol. 67, 321–342 (2016).


    Google Scholar
     

  • Hamim, O. F. et al. A sociotechnical approach to accident analysis in a low-income setting: using accimaps to guide road safety recommendations in Bangladesh. Saf. Sci. 124, 104589 (2020).


    Google Scholar
     

  • Singh, G. et al. Deep neural network-based predictive modeling of road accidents. Neural Comput. Appl. 32, 12417–12426 (2020).


    Google Scholar
     

  • Shi, Q. & Abdel-Aty, M. Big data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. Transp. Res. Part. C: Emerg. Technol. 58, 380–394 (2015).


    Google Scholar
     

  • Mohanty, M. et al. Development of crash prediction models by assessing the role of perpetrators and victims: a comparison of ANN & logistic model using historical crash data. Int. J. Injury Control Saf. Promotion. 30 (2), 155–171 (2023).


    Google Scholar
     

  • Lee, J. et al. Model evaluation for forecasting traffic accident severity in rainy seasons using machine learning algorithms: Seoul City study. Appl. Sci. 10 (1), 129 (2019).


    Google Scholar
     

  • Lavrenz, S. M. et al. Time series modeling in traffic safety research. Accid. Anal. Prev. 117, 368–380 (2018).

    PubMed 

    Google Scholar
     

  • Asadianfam, S., Shamsi, M., Rasouli, A. & Kenari Big data platform of traffic violation detection system: identifying the risky behaviors of vehicle drivers. Multimedia Tools Appl. 79 (33–34), 24645–24684 (2020).


    Google Scholar
     

  • Gutierrez-Osorio, C. & Pedraza, C. Modern data sources and techniques for analysis and forecast of road accidents: A review. J. Traffic Transp. Eng. (English edition). 7 (4), 432–446 (2020).


    Google Scholar
     

  • Parsa, A. B. et al. Toward Safer Highways, Application of XGBoost and SHAP for real-time Accident Detection and Feature Analysis136p. 105405 (Accident Analysis & Prevention, 2020).

  • Ma, Z., Mei, G. & Cuomo, S. An analytic framework using deep learning for prediction of traffic accident injury severity based on contributing factors. Accid. Anal. Prev. 160, 106322 (2021).

    PubMed 

    Google Scholar
     

  • Najafi Moghaddam Gilani, V. et al. Data-driven urban traffic accident analysis and prediction using logit and machine learning-based pattern recognition models. Math. Probl. Eng. 2021, 1–11 (2021).


    Google Scholar
     

  • Formosa, N. et al. Predicting real-time traffic conflicts using deep learning. Accid. Anal. Prev. 136, 105429 (2020).

    PubMed 

    Google Scholar
     

  • Li, K., Xu, H. & Liu, X. Analysis and visualization of accidents severity based on LightGBM-TPE. Solitons Fractals. 157, 111987 (2022). Chaos.


    Google Scholar
     

  • Zafian, T. et al. Using SHRP2 NDS Data To Examine Infrastructure and Other Factors Contributing To Older Driver Crashes during Left Turns at Signalized Intersections156. 106141 (Accident Analysis & Prevention, 2021).

  • Tran, D. et al. Real-time detection of distracted driving based on deep learning. IET Intel. Transport Syst. 12 (10), 1210–1219 (2018).


    Google Scholar
     

  • Guo, Y. et al. Deep learning for visual understanding: A review. Neurocomputing 187, 27–48 (2016).


    Google Scholar
     

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep Learn. Nat., 521(7553): 436–444. (2015).

    CAS 

    Google Scholar
     

  • Zhang, Z. et al. A deep learning approach for detecting traffic accidents from social media data. Transp. Res. Part. C: Emerg. Technol. 86, 580–596 (2018).


    Google Scholar
     

  • Jiang, W. & Luo, J. Graph neural network for traffic forecasting: A survey. Expert Syst. Appl. 207, 117921 (2022).


    Google Scholar
     

  • Dong, C. et al. An improved deep learning model for traffic crash prediction. J. Adv. Transp. 2018, 1–13 (2018).


    Google Scholar
     

  • Shunshun, W., Changshun, Y. & Yong, S. A review of road traffic accident prediction methods. Am. J. Manage. Sci. Eng. 8 (3), 73–77 (2023).


    Google Scholar
     

  • Theofilatos, A., Chen, C. & Antoniou, C. Comparing machine learning and deep learning methods for real-time crash prediction. Transp. Res. Rec. 2673 (8), 169–178 (2019).


    Google Scholar
     

  • Ullah, Z. et al. Applications of artificial intelligence and machine learning in smart cities. Comput. Commun. 154, 313–323 (2020).


    Google Scholar
     

  • Ren, H. et al. A deep learning approach to the citywide traffic accident risk prediction. In:21st International Conference on Intelligent Transportation Systems (ITSC). 2018. IEEE. (2018).

  • Mannering, F. et al. Big data, traditional data and the tradeoffs between prediction and causality in highway-safety analysis. Analytic Methods Accid. Res. 25, 100113 (2020).


    Google Scholar
     

  • Silva, P. B., Andrade, M. & Ferreira, S. Machine learning applied to road safety modeling: A systematic literature review. J. Traffic Transp. Eng. (English edition). 7 (6), 775–790 (2020).


    Google Scholar
     

  • Zantalis, F. et al. A review of machine learning and IoT in smart transportation. Fut. Internet. 11 (4), 94 (2019).


    Google Scholar
     

  • Chen, H. et al. Improved Naive Bayes classification algorithm for traffic risk management. EURASIP J. Adv. Signal Process. 2021 (1), 1–12 (2021).

    CAS 

    Google Scholar
     

  • Yu, B. et al. k-Nearest neighbor model for multiple-time-step prediction of short-term traffic condition. J. Transp. Eng. 142 (6), 04016018 (2016).


    Google Scholar
     

  • Pakgohar, A. et al. The role of human factor in incidence and severity of road crashes based on the CART and LR regression: a data mining approach. Procedia Comput. Sci. 3, 764–769 (2011).


    Google Scholar
     

  • Moussa, G. S., Owais, M. & Dabbour, E. Variance-based Global Sensitivity Analysis for rear-end Crash Investigation Using Deep Learning165. 106514 (Accident analysis & prevention, 2020).

  • Owais, M., Alshehri, A., Gyani, J., Aljarbou, M. H. & Alsulamy, S. Prioritizing rear-end crash explanatory factors for injury severity level using deep learning and global sensitivity analysis. Expert Syst. Appl. 245, 123114 (2024).


    Google Scholar
     

  • Owais, M. & El Sayed, M. A. Red light crossing violations modelling using deep learning and variance-based sensitivity analysis. Expert Syst. Appl. 267, 126258 (2025).


    Google Scholar
     

  • Iranitalab, A. & Khattak, A. Comparison of four statistical and machine learning methods for crash severity prediction. Accid. Anal. Prev. 108, 27–36 (2017).

    PubMed 

    Google Scholar
     

  • Abellán, J., López, G., De, J. & OñA Analysis of traffic accident severity using decision rules via decision trees. Expert Syst. Appl. 40 (15), 6047–6054 (2013).


    Google Scholar
     

  • Li, X. et al. Predicting motor vehicle crashes using support vector machine models. Accid. Anal. Prev. 40 (4), 1611–1618 (2008).

    PubMed 

    Google Scholar
     

  • Aguero-Valverde, J. & Jovanis, P. P. Spatial analysis of fatal and injury crashes in Pennsylvania. Accid. Anal. Prev. 38 (3), 618–625 (2006).

    PubMed 

    Google Scholar
     

  • Mussone, L., Ferrari, A. & Oneta, M. An analysis of urban collisions using an artificial intelligence model. Accid. Anal. Prev. 31 (6), 705–718 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, Z., Zhou, X. & Yang, T. Hetero-convlstm: A deep learning approach to traffic accident prediction on heterogeneous spatio-temporal data. in Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. (2018).

  • Hermans, E., Wets, G. & Van den Bossche, F. Frequency and severity of Belgian road traffic accidents studied by state-space methods. J. Transp. Stat. 9 (1), 63 (2006).


    Google Scholar
     

  • Quddus, M. A. Time series count data models: an empirical application to traffic accidents. Accid. Anal. Prev. 40 (5), 1732–1741 (2008).

    PubMed 

    Google Scholar
     

  • Li, P., Abdel-Aty, M. & Yuan, J. Real-time crash risk prediction on arterials based on LSTM-CNN. Accid. Anal. Prev. 135, 105371 (2020).

    PubMed 

    Google Scholar
     

  • Yeole, M., Jain, R. K. & Menon, R. Prediction of road accident using artificial neural network. Int. J. Eng. Trends Technol. 70 (3), 151–161 (2022).


    Google Scholar
     

  • Alqatawna, A., Álvarez, A. M. R. & García-Moreno, S. S. C. Comparison of multivariate regression models and artificial neural networks for prediction highway traffic accidents in spain: A case study. Transp. Res. Procedia. 58, 277–284 (2021).


    Google Scholar
     

  • García de Soto, B. et al. Predicting road traffic accidents using artificial neural network models. Infrastructure Asset Manage. 5 (4), 132–144 (2018).


    Google Scholar
     

  • Al-Masaeid, H. R. & Khaled, F. J. Performance of traffic accidents’ prediction models. Jordan J. Civil Eng., 17(1). (2023).

  • Dutta, B., Barman, M. P. & Patowary, A. Application of Arima model for forecasting road accident deaths in India. Int. J. Agricultural Stat. Sci. 16 (2), 607–615 (2020).


    Google Scholar
     

  • Getahun, K. A. Time series modeling of road traffic accidents in Amhara region. J. Big Data, 8(1). (2021).

  • Qian, Y. et al. Forecasting deaths of road traffic injuries in China using an artificial neural network. Traffic Inj. Prev. 21 (6), 407–412 (2020).

    PubMed 

    Google Scholar
     

  • Deretić, N. et al. SARIMA modelling approach for forecasting of traffic accidents. Sustainability 14 (8), 4403 (2022).


    Google Scholar
     

  • Husin, W. Z. W. et al. Box-Jenkins and State Space Model in Forecasting Malaysia Road Accident Cases. in Journal of Physics: Conference Series. IOP Publishing. (2021).

  • Junus, N. W. M., Ismail, M. T. & Arsad, Z. Predicting Penang road accidents influences: time series regression versus structural time series. Indian J. Sci. Technol. 8 (30), 1017485 (2015).


    Google Scholar
     

  • Dutta, B., Barman, M. P. & Patowary, A. N. Exponential smoothing state space innovation model for forecasting road accident deaths in India. Thail. Stat. 20 (1), 26–35 (2022).


    Google Scholar
     

  • Antoniou, C. & Yannis, G. State-space based analysis and forecasting of macroscopic road safety trends in Greece. Accid. Anal. Prev. 60, 268–276 (2013).

    PubMed 

    Google Scholar
     

  • Jiang, F., Yuen, K. K. R. & Lee, E. W. M. A long short-term memory-based framework for crash detection on freeways with traffic data of different Temporal resolutions. Accid. Anal. Prev. 141, 105520 (2020).

    PubMed 

    Google Scholar
     

  • Sameen, M. I. & Pradhan, B. Severity prediction of traffic accidents with recurrent neural networks. Appl. Sci. 7 (6), 476 (2017).


    Google Scholar
     

  • Wen, X., Xie, Y., Jiang, L., Pu, Z. & Ge, T. Applications of machine learning methods in traffic crash severity modelling: current status and future directions. Transp. Reviews. 41 (6), 855–879 (2021).


    Google Scholar
     

  • Katambire, V. N., Musabe, R., Uwitonze, A. & Mukanyiligira, D. Forecasting the traffic flow by using ARIMA and LSTM models: case of Muhima junction. Forecasting 5 (4), 616–628 (2023).


    Google Scholar
     

  • Wang, C., Xie, Y., Huang, H. & Liu, P. A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling. Accid. Anal. Prev. 157, 106157 (2021).

    PubMed 

    Google Scholar
     

  • Aoki, M. State Space Modeling of time Series (Springer Science & Business Media, 2013).

  • Zupan, J. Introduction to artificial neural network (ANN) methods: what they are and how to use them. Acta Chim. Slov. 41, 327–327 (1994).

    CAS 

    Google Scholar
     

  • Lai, Y. & Dzombak, D. A. Use of the autoregressive integrated moving average (ARIMA) model to forecast near-term regional temperature and precipitation. Weather Forecast. 35 (3), 959–976 (2020).


    Google Scholar
     

  • Owais, M. Preprocessing and postprocessing analysis for hot-mix asphalt dynamic modulus experimental data. Constr. Build. Mater. 450, 138693 (2024).


    Google Scholar
     

  • Owais, M. Analysing Witczak 1-37A, Witczak 1-40D and modified hirsch models for asphalt dynamic modulus prediction using global sensitivity analysis. Int. J. Pavement Eng. 24 (1), 2268808 (2023).


    Google Scholar
     

  • Orenc, S., Acar, E. & Özerdem, M. S. The Electricity Price Prediction of Victoria City Based on Various Regression Algorithms. In: Global Energy Conference (GEC). IEEE. (2022).

  • Gönenç, A. et al. Artificial Intelligence Based Regression Models for Prediction of Smart Grid Stability. in 2022 Global Energy Conference (GEC). IEEE. (2022).

  • Ruzgar, S. & Acar, E. The statistical neural network-based regression approach for prediction of optical band gap of CuO. Indian J. Phys. 96 (12), 3547–3557 (2022).

    CAS 

    Google Scholar
     

  • Kasemset, C., Sae-Haew, N. & Sopadang, A. Multiple regression model for forecasting quantity of supply of off-season Longan. CMU J. Nat. Sci. 13 (3), 391–402 (2014).


    Google Scholar
     

  • Lewis, C. D. Industrial and Business Forecasting Methods: A Practical Guide To Exponential Smoothing and Curve Fitting (No Title), 1982).



  • Source link