Skip to content
A4 civilengineering
  • Home
  • About Us
  • Education
  • Community
  • Thought
  • Ongoing Happenings
  • Contact Us
Menu Close

Blog

  1. Home>
  2. Environmental>
  3. The perspective from space unlocks the Amazon water cycle
The perspective from space unlocks the Amazon water cycle
The Amazon basin is the world’s largest river basin, with intricate and complex hydrology. It stretches across seven nations and feeds 4 of the 10 largest rivers in the world. The basin encompasses dense tropical forests, extensive floodplains, and interconnected wetlands. The region also receives a lot of rain—approximately 2,200 millimeters (86 inches) per year. Gaining a better understanding of Amazon hydrology is essential, especially in light of the ongoing environmental changes across the basin, with increasing floods, droughts, dam building, and deforestation.

is on the horizon—over the next many years, NASA plans to launch two dedicated hydrology satellites: the Surface Water and Ocean Topography (SWOT) mission and the NASA-ISRO SAR (NISAR) mission.

In advance of the upcoming remote sensing missions, Fassoni-Andrade et al. recently published a comprehensive review of the basin’s hydrology. An international team of more than 20 scientists compiled the study, which looks at three decades of work. The assessment evaluates precipitation, evapotranspiration, surface water, aquatic ecosystems, environmental changes, and more through the lens of remote sensing. The review provides a holistic view of the Amazon’s water cycle while laying out challenges and knowledge gaps for future research in the region.

The authors treat each topic as a subreview—for example, looking at precipitation, the authors discuss how infrared and microwave sensors monitor rainfall and describe the algorithms that process the data. They then report on successful remote sensing applications, such as how one project used satellite data to delineate the beginning and end of the Amazonian wet season. Last, the authors outline some challenges of measuring precipitation through remote sensing, including those related to the asymmetry of satellite readings and weather processes on the ground. They apply a similar structure to the other themes evaluated in the review.

According to the authors, their study serves as a model for other river basins to synthesize large-scale hydrological information. Although the knowledge reviewed in the paper needs to be translated to water management and environmental governance, the authors hope that the study will lead to an integrated monitoring and research agenda across the basin.
Read More
phys.org

Read more articles

Previous PostNew project to help researchers mitigate risks of environmental pollutants
Next PostNew database to help with carbon reporting

You Might Also Like

How smart buildings and smart grids work together to reduce the carbon footprint

How smart buildings and smart grids work together to reduce the carbon footprint

November 27, 2021
USDOT releases climate adaptation and resilience plan

USDOT releases climate adaptation and resilience plan

October 26, 2021
New method aids water prospecting and dam security

New method aids water prospecting and dam security

January 20, 2022

Archives

  • October 2025
  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021

Categories

  • 3D Printing
  • Air Quality
  • Architecture
  • Automation
  • BIM
  • Civil Software
  • Computer Vision
  • Constrcution Site
  • Digital Twin
  • Disaster
  • Earthquake
  • Edu Resource
  • Environmental
  • FreeCourse
  • Geotechnical Engineering
  • GIS
  • Industry News
  • Intelligent Transportation System
  • IOT
  • Market Analysis
  • Project Management
  • Remote Sensing
  • Sensors
  • Smart City
  • Smart Home
  • Smart Home/Building
  • Smart Materials
  • Structural Engineering
  • Structural Health Monitoring
  • Transportation
  • Uncategorized
  • Urban Planning

Recent Posts

  • How AI is redefining a cyber engineer’s day
  • Hong Kong develops AI-driven landslip warning system with more than 90% accuracy
  • Nationwide Backlash Brewing Against Big Tech’s Energy-Devouring AI Data Centers
  • AI-powered landslip warning system with 90 percent accuracy to launch in 2026
  • NOXIFER has obtained two new European Technical Assessments
A4 civilengineering
©2021 Privacy policy
  • Home
  • About Us
  • Education
  • Community
  • Thought
  • Ongoing Happenings
  • Contact Us

Enjoying the contents?

Subscribe to our weekly newsletter