Fire Protection Committee. Structural Fire Engineering (American Society of Civil Engineers, 2018). https://doi.org/10.1061/9780784415047.IN
Pachideh, G., Gholhaki, M. & Nouri, Y. An investigation into the impact of fire on lateral stability and strength of thin steel plate shear walls. Amirkabir J. Civ. Eng. 52, 859–872. https://doi.org/10.22060/ceej.2018.15003.5809 (2020).
Buchanan, A. H. & Abu, A. K. Structural design for fire safety: second edition. Struct. Des. Fire Saf. Second Ed. 1–415. https://doi.org/10.1002/9781118700402 (2016).
Eftekhar Afzali, S. et al. Compaction and compression behavior of waste materials and Fiber-Reinforced Cement-Treated sand. J. Struct. Des. Constr. Pract. 30, 04025007. https://doi.org/10.1061/JSDCCC.SCENG-1643 (2025).
LaMalva, K. & Hopkin, D. (eds) International Handbook of Structural Fire Engineering (2021). https://doi.org/10.1007/978-3-030-77123-2
Asaad Samani, A. & Hoseini Vaez, S. R. Fire resistance and collapse mechanisms of 2D steel moment frames: A numerical study. J. Rehabil Civ. Eng. 0. https://doi.org/10.22075/JRCE.2025.36843.2269 (2025).
Wang, S., Fu, Y., Ban, S., Duan, Z. & Su, J. Genetic evolutionary deep learning for fire resistance analysis in fibre-reinforced polymers strengthened reinforced concrete beams. Eng. Fail. Anal. 169, 109149. https://doi.org/10.1016/J.ENGFAILANAL.2024.109149 (2025).
Liu, C., Liu, X., Yan, L. & Zheng, C. Experimental study on bond behavior of corroded reinforced concrete under coupling effect of fatigue load and elevated temperature. Eng. Fail. Anal. 166, 108862. https://doi.org/10.1016/J.ENGFAILANAL.2024.108862 (2024).
Wang, G., Zheng, Z., Wang, J., Jiang, J. & Lv, Y. Experimental study on fire response of large-scale RC space frame structures and numerical calculation method. Eng. Fail. Anal. 171, 109362. https://doi.org/10.1016/J.ENGFAILANAL.2025.109362 (2025).
Cao, V. & Van, Nguyen, V. N. Flexural performance of postfire reinforced concrete beams: experiments and theoretical analysis. J. Perform. Constr. Facil. 36, 04022029. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001739 (2022).
Yang, J., Yan, K., Doh, J. H. & Zhang, X. Experimental study on shear performance of ultra-high-performance concrete beams at elevated temperatures. Eng. Struct. 291, 116304. https://doi.org/10.1016/J.ENGSTRUCT.2023.116304 (2023).
Noman, M. & Yaqub, M. Restoration of dynamic characteristics of RC T-beams exposed to fire using post fire curing technique. Eng. Struct. 249, 113339. https://doi.org/10.1016/J.ENGSTRUCT.2021.113339 (2021).
Hostetter, H., Naser ·, M. Z., Hawileh, R. A. & Zhou, H. Karaki · Ghada, Enhancing fire resistance of reinforced concrete beams through sacrificial reinforcement. Archit Struct Constr. 2, 311–322. (2022). https://doi.org/10.1007/S44150-022-00061-W
Banerji, S. & Kodur, V. Numerical model for tracing the response of Ultra-High performance concrete beams exposed to fire. Fire Mater. 47, 322–340. https://doi.org/10.1002/FAM.3099 (2023).
Ren, P., Hou, X., Cui, Z., Xie, H. & Abid, M. Fire resistance evaluation and minimum reinforcement ratio for hybrid fibre-reinforced RPC beams under fire exposure. J. Build. Eng. 44, 103216. https://doi.org/10.1016/J.JOBE.2021.103216 (2021).
Kodur, V. K. R. & Banerji, S. Comparative fire behavior of reinforced concrete beams made of different concrete strengths. Fire Technol. 60, 3117–3146. https://doi.org/10.1007/S10694-023-01375-X/FIGURES/15 (2024).
Qin, H. et al. Experimental research on the spalling behaviour of ultra-high performance concrete under fire conditions. Constr. Build. Mater. 303, 124464. https://doi.org/10.1016/J.CONBUILDMAT.2021.124464 (2021).
Hassan, A., Khairallah, F., Elsayed, H., Salman, A. & Mamdouh, H. Behaviour of concrete beams reinforced using basalt and steel bars under fire exposure. Eng. Struct. 238, 112251. https://doi.org/10.1016/J.ENGSTRUCT.2021.112251 (2021).
Liu, C., Zhou, B., Guo, X., Liu, C. & Wang, L. Analysis and prediction methods for the static properties of reinforced concrete beams under fire. Structures 47, 2319–2330. https://doi.org/10.1016/J.ISTRUC.2022.12.041 (2023).
Zhao, X. Y., Chen, J. X. & Wu, B. An interpretable ensemble-learning-based open source model for evaluating the fire resistance of concrete-filled steel tubular columns. Eng. Struct. 270, 114886. https://doi.org/10.1016/J.ENGSTRUCT.2022.114886 (2022).
Nariman, N. A., Hamdia, K., Ramadan, A. M. & Sadaghian, H. Optimum design of flexural strength and stiffness for reinforced concrete beams using machine learning. Appl. Sci. 2021. 11, 11:8762. https://doi.org/10.3390/APP11188762 8762 (2021).
Khan, M. et al. Intelligent prediction modeling for flexural capacity of FRP-strengthened reinforced concrete beams using machine learning algorithms. Heliyon 10, e23375. https://doi.org/10.1016/J.HELIYON.2023.E23375 (2024).
Solhmirzaei, R., Salehi, H. & Kodur, V. Predicting flexural capacity of Ultrahigh-Performance concrete beams: machine Learning–Based approach. J. Struct. Eng. 148, 04022031. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003320 (2022).
Kumar, R., Rai, B. & Samui, P. Machine learning techniques for prediction of failure loads and fracture characteristics of high and ultra-high strength concrete beams. Innov. Infrastruct. Solut. 8, 1–20. https://doi.org/10.1007/S41062-023-01191-W/FIGURES/10 (2023).
Naser, M. Z. Observational analysis of Fire-Induced spalling of concrete through ensemble machine learning and surrogate modeling. J. Mater. Civ. Eng. 33, 04020428. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003525 (2020).
Naser, M. Z. & Kodur, V. K. Explainable machine learning using real, synthetic and augmented fire tests to predict fire resistance and spalling of RC columns. Eng. Struct. 253, 113824. https://doi.org/10.1016/J.ENGSTRUCT.2021.113824 (2022).
Panev, Y., Kotsovinos, P., Deeny, S. & Flint, G. The use of machine learning for the prediction of fire resistance of composite shallow floor systems. Fire Technol. 57, 3079–3100. https://doi.org/10.1007/S10694-021-01108-Y/FIGURES/19 (2021).
Ye, Z., Hsu, S. C. & Wei, H. H. Real-time prediction of structural fire responses: A finite element-based machine-learning approach. Autom. Constr. 136, 104165. https://doi.org/10.1016/J.AUTCON.2022.104165 (2022).
Environmental, H. E. & TJ of E&. Nominal moment capacity of box reinforced concrete beams exposed to fire. CiteseerH ErdemTurkish J Eng Environ Sci 2009•Citeseer 2009;33:31–44. (2009). undefined https://doi.org/10.3906/muh-0811-4
Erdem, H. Predicting the moment capacity of RC beams exposed to fire using ANNs. Constr. Build. Mater. 101, 30–38. https://doi.org/10.1016/J.CONBUILDMAT.2015.10.049 (2015).
Erdem, H. Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks. Adv. Eng. Softw. 41, 270–276. https://doi.org/10.1016/J.ADVENGSOFT.2009.07.006 (2010).
Ahmadi, M., Kheyroddin, A., Dalvand, A. & Kioumarsi, M. New empirical approach for determining nominal shear capacity of steel fiber reinforced concrete beams. Constr. Build. Mater. 234, 117293. https://doi.org/10.1016/J.CONBUILDMAT.2019.117293 (2020).
Fakharian, P., Rezazadeh Eidgahee, D., Akbari, M., Jahangir, H. & Ali Taeb, A. Compressive strength prediction of Hollow concrete masonry blocks using artificial intelligence algorithms. Structures 47, 1790–1802. https://doi.org/10.1016/j.istruc.2022.12.007 (2023).
Chen, L. et al. Axial compressive strength predictive models for recycled aggregate concrete filled circular steel tube columns using ANN, GEP, and MLR. J. Build. Eng. 77, 107439. https://doi.org/10.1016/j.jobe.2023.107439 (2023).
Kumarawadu, H., Weerasinghe, P. & Perera, J. S. Evaluating the performance of ensemble machine learning algorithms over traditional machine learning algorithms for predicting fire resistance in FRP strengthened concrete beams. Electron. J. Struct. Eng. 24, 47–53. https://doi.org/10.56748/ejse.24661 (2024).
Habib, A., Barakat, S., Al-Toubat, S., Junaid, M. T. & Maalej, M. Developing machine learning models for identifying the failure potential of Fire-Exposed FRP-Strengthened concrete beams. Arab. J. Sci. Eng. 2024 5011, 50:8475–8490. https://doi.org/10.1007/S13369-024-09497-2 (2024).
Ho, T. N. T., Nguyen, T. P. & Truong, G. T. Concrete spalling identification and fire resistance prediction for fired RC columns using machine Learning-Based approaches. Fire Technol. 2024 603. 60, 1823–1866. https://doi.org/10.1007/S10694-024-01550-8 (2024).
Hao, Z. H., Feng, P., Zhang, S. & Zhai, Y. Machine learning for predicting fiber-reinforced polymer durability: A critical review and future directions. Compos. Part. B Eng. 303, 112587. https://doi.org/10.1016/J.COMPOSITESB.2025.112587 (2025).
ISO834. Fire resistance tests elements of building construction Part 1–9: International Standards Organisation, Geneva; (1975).
Eurocode2. Design of Concrete Structures ENV 1992 Part 1–2: General Rules Structural Fire Design (European Committee For Standardization, Brussels, 1995).
Incropera, F., DeWitt, D., Bergman, T. & Lavine, A. Fundamentals of heat and mass transfer. (1996).
Kovačević, M., Hadzima-Nyarko, M., Petronijević, P., Vasiljević, T. & Radomirović, M. Comparative Analysis of Machine Learning Models for Predicting Interfacial Bond Strength of Fiber-Reinforced Polymer-Concrete Comput. ;13:17. https://doi.org/10.3390/COMPUTATION13010017/S1. (2025).
Snoek, J., Larochelle, H. & Adams, R. P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. ;25. (2012).
Wu, J. et al. Hyperparameter optimization for machine learning models based on bayesian optimization. J. Electron. Sci. Technol. 17, 26–40. https://doi.org/10.11989/JEST.1674-862X.80904120 (2019).
Isleem, H. F. et al. Analysis of flow dynamics and energy dissipation in piano key and labyrinth weirs using computational fluid dynamics. Comput. Fluid Dyn. – Anal. Simulations Appl. [Working Title]. https://doi.org/10.5772/INTECHOPEN.1006332 (2024).
Eltarabily, M. G., Selim, T., Elshaarawy, M. K. & Mourad, M. H. Numerical and experimental modeling of geotextile soil reinforcement for optimizing settlement and stability of loaded slopes of irrigation canals. Environ. Earth Sci. 83, 246. https://doi.org/10.1007/s12665-024-11560-y (2024).
Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. Proc. ACM SIGKDD Int. Conf. Knowl. Discov Data Min. 13-17-Augu, 785–794. https://doi.org/10.1145/2939672.2939785/SUPPL_FILE/KDD2016_CHEN_BOOSTING_SYSTEM_01-ACM.MP4 (2016).
CAO, Y. & MIAO Q-G, LIU J-C, G. A. O. L. Advance and prospects of adaboost algorithm. Acta Autom. Sin. 39, 745–758. https://doi.org/10.1016/S1874-1029(13)60052-X (2013).
Ke, G. et al. LightGBM: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. ;30. (2017).
Liang, W., Luo, S., Zhao, G. & Wu, H. Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM Algorithms. Math 2020. Page 8, 8:765. https://doi.org/10.3390/MATH8050765 (765 2020).
Nouri, Y., Ghanizadeh, A. R., Safi Jahanshahi, F. & Fakharian, P. Data-driven prediction of axial compression capacity of GFRP-reinforced concrete column using soft computing methods. J. Build. Eng. 101, 111831. https://doi.org/10.1016/j.jobe.2025.111831 (2025).
Fakharian, P., Bazrgary, R., Ghorbani, A., Tavakoli, D. & Nouri, Y. Compressive strength prediction of green concrete with recycled Glass-Fiber-Reinforced polymers using a machine learning approach. Polym. (Basel). 17. https://doi.org/10.3390/polym17202731 (2025).
Nouri, Y., Ghanbari, M. A. & Fakharian, P. Flexural behavior of hybrid GFRP-steel reinforced concrete beam: experimental and explainable artificial intelligence. Eng. Struct. 345, 121565. https://doi.org/10.1016/j.engstruct.2025.121565 (2025).
Ziaie, A., Mehdizadeh, B., Safi Jahanshahi, F., Ahmadi, N. & Ghanizadeh, A. R. Prediction of Liquefaction-Induced lateral displacements using hybrid GBRT and EOA. J. Soft Comput. Civ. Eng. 2026;10: (2061). https://doi.org/10.22115/scce.2025.2061
Fakharian, P. et al. Bond strength prediction of externally bonded reinforcement on groove method (EBROG) using MARS-POA. Compos. Struct. 349–350. https://doi.org/10.1016/j.compstruct.2024.118532 (2024).
Massey, F. J. Jr The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951).
Anderson, T. W. & Darling, D. A. A test of goodness of fit. J. Am. Stat. Assoc. 49, 765–769 (1954).
Pettitt, A. N. Testing the normality of several independent samples using the Anderson-Darling statistic. Appl. Stat. 26, 156. https://doi.org/10.2307/2347023 (1977).
Steinskog, D. J., Tjøstheim, D. B. & Kvamstø, N. G. A cautionary note on the use of the Kolmogorov–Smirnov test for normality. Mon Weather Rev. 135, 1151–1157. https://doi.org/10.1175/MWR3326.1 (2007).
Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst., vol. – Decem, Neural information processing systems foundation; 2017, 4766–75. (2017).
Shabani Ammari, A. et al. Flexural strengthening of corroded steel beams with CFRP by using the end anchorage: Experimental, numerical, and machine learning methods. Case Stud. Constr. Mater. 23, e04966. https://doi.org/10.1016/j.cscm.2025.e04966 (2025).
Wang, H., Liang, Q., Hancock, J. T. & Khoshgoftaar, T. M. Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods. J. Big Data. 11, 44. https://doi.org/10.1186/s40537-024-00905-w (2024).