• Fire Protection Committee. Structural Fire Engineering (American Society of Civil Engineers, 2018). https://doi.org/10.1061/9780784415047.IN

  • Pachideh, G., Gholhaki, M. & Nouri, Y. An investigation into the impact of fire on lateral stability and strength of thin steel plate shear walls. Amirkabir J. Civ. Eng. 52, 859–872. https://doi.org/10.22060/ceej.2018.15003.5809 (2020).


    Google Scholar
     

  • Buchanan, A. H. & Abu, A. K. Structural design for fire safety: second edition. Struct. Des. Fire Saf. Second Ed. 1–415. https://doi.org/10.1002/9781118700402 (2016).

  • Eftekhar Afzali, S. et al. Compaction and compression behavior of waste materials and Fiber-Reinforced Cement-Treated sand. J. Struct. Des. Constr. Pract. 30, 04025007. https://doi.org/10.1061/JSDCCC.SCENG-1643 (2025).


    Google Scholar
     

  • LaMalva, K. & Hopkin, D. (eds) International Handbook of Structural Fire Engineering (2021). https://doi.org/10.1007/978-3-030-77123-2

  • Asaad Samani, A. & Hoseini Vaez, S. R. Fire resistance and collapse mechanisms of 2D steel moment frames: A numerical study. J. Rehabil Civ. Eng. 0. https://doi.org/10.22075/JRCE.2025.36843.2269 (2025).

  • Wang, S., Fu, Y., Ban, S., Duan, Z. & Su, J. Genetic evolutionary deep learning for fire resistance analysis in fibre-reinforced polymers strengthened reinforced concrete beams. Eng. Fail. Anal. 169, 109149. https://doi.org/10.1016/J.ENGFAILANAL.2024.109149 (2025).


    Google Scholar
     

  • Liu, C., Liu, X., Yan, L. & Zheng, C. Experimental study on bond behavior of corroded reinforced concrete under coupling effect of fatigue load and elevated temperature. Eng. Fail. Anal. 166, 108862. https://doi.org/10.1016/J.ENGFAILANAL.2024.108862 (2024).


    Google Scholar
     

  • Wang, G., Zheng, Z., Wang, J., Jiang, J. & Lv, Y. Experimental study on fire response of large-scale RC space frame structures and numerical calculation method. Eng. Fail. Anal. 171, 109362. https://doi.org/10.1016/J.ENGFAILANAL.2025.109362 (2025).


    Google Scholar
     

  • Cao, V. & Van, Nguyen, V. N. Flexural performance of postfire reinforced concrete beams: experiments and theoretical analysis. J. Perform. Constr. Facil. 36, 04022029. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001739 (2022).


    Google Scholar
     

  • Yang, J., Yan, K., Doh, J. H. & Zhang, X. Experimental study on shear performance of ultra-high-performance concrete beams at elevated temperatures. Eng. Struct. 291, 116304. https://doi.org/10.1016/J.ENGSTRUCT.2023.116304 (2023).


    Google Scholar
     

  • Noman, M. & Yaqub, M. Restoration of dynamic characteristics of RC T-beams exposed to fire using post fire curing technique. Eng. Struct. 249, 113339. https://doi.org/10.1016/J.ENGSTRUCT.2021.113339 (2021).


    Google Scholar
     

  • Hostetter, H., Naser ·, M. Z., Hawileh, R. A. & Zhou, H. Karaki · Ghada, Enhancing fire resistance of reinforced concrete beams through sacrificial reinforcement. Archit Struct Constr. 2, 311–322. (2022). https://doi.org/10.1007/S44150-022-00061-W

  • Banerji, S. & Kodur, V. Numerical model for tracing the response of Ultra-High performance concrete beams exposed to fire. Fire Mater. 47, 322–340. https://doi.org/10.1002/FAM.3099 (2023).


    Google Scholar
     

  • Ren, P., Hou, X., Cui, Z., Xie, H. & Abid, M. Fire resistance evaluation and minimum reinforcement ratio for hybrid fibre-reinforced RPC beams under fire exposure. J. Build. Eng. 44, 103216. https://doi.org/10.1016/J.JOBE.2021.103216 (2021).


    Google Scholar
     

  • Kodur, V. K. R. & Banerji, S. Comparative fire behavior of reinforced concrete beams made of different concrete strengths. Fire Technol. 60, 3117–3146. https://doi.org/10.1007/S10694-023-01375-X/FIGURES/15 (2024).


    Google Scholar
     

  • Qin, H. et al. Experimental research on the spalling behaviour of ultra-high performance concrete under fire conditions. Constr. Build. Mater. 303, 124464. https://doi.org/10.1016/J.CONBUILDMAT.2021.124464 (2021).


    Google Scholar
     

  • Hassan, A., Khairallah, F., Elsayed, H., Salman, A. & Mamdouh, H. Behaviour of concrete beams reinforced using basalt and steel bars under fire exposure. Eng. Struct. 238, 112251. https://doi.org/10.1016/J.ENGSTRUCT.2021.112251 (2021).


    Google Scholar
     

  • Liu, C., Zhou, B., Guo, X., Liu, C. & Wang, L. Analysis and prediction methods for the static properties of reinforced concrete beams under fire. Structures 47, 2319–2330. https://doi.org/10.1016/J.ISTRUC.2022.12.041 (2023).


    Google Scholar
     

  • Zhao, X. Y., Chen, J. X. & Wu, B. An interpretable ensemble-learning-based open source model for evaluating the fire resistance of concrete-filled steel tubular columns. Eng. Struct. 270, 114886. https://doi.org/10.1016/J.ENGSTRUCT.2022.114886 (2022).


    Google Scholar
     

  • Nariman, N. A., Hamdia, K., Ramadan, A. M. & Sadaghian, H. Optimum design of flexural strength and stiffness for reinforced concrete beams using machine learning. Appl. Sci. 2021. 11, 11:8762. https://doi.org/10.3390/APP11188762 8762 (2021).

  • Khan, M. et al. Intelligent prediction modeling for flexural capacity of FRP-strengthened reinforced concrete beams using machine learning algorithms. Heliyon 10, e23375. https://doi.org/10.1016/J.HELIYON.2023.E23375 (2024).


    Google Scholar
     

  • Solhmirzaei, R., Salehi, H. & Kodur, V. Predicting flexural capacity of Ultrahigh-Performance concrete beams: machine Learning–Based approach. J. Struct. Eng. 148, 04022031. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003320 (2022).


    Google Scholar
     

  • Kumar, R., Rai, B. & Samui, P. Machine learning techniques for prediction of failure loads and fracture characteristics of high and ultra-high strength concrete beams. Innov. Infrastruct. Solut. 8, 1–20. https://doi.org/10.1007/S41062-023-01191-W/FIGURES/10 (2023).


    Google Scholar
     

  • Naser, M. Z. Observational analysis of Fire-Induced spalling of concrete through ensemble machine learning and surrogate modeling. J. Mater. Civ. Eng. 33, 04020428. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003525 (2020).


    Google Scholar
     

  • Naser, M. Z. & Kodur, V. K. Explainable machine learning using real, synthetic and augmented fire tests to predict fire resistance and spalling of RC columns. Eng. Struct. 253, 113824. https://doi.org/10.1016/J.ENGSTRUCT.2021.113824 (2022).


    Google Scholar
     

  • Panev, Y., Kotsovinos, P., Deeny, S. & Flint, G. The use of machine learning for the prediction of fire resistance of composite shallow floor systems. Fire Technol. 57, 3079–3100. https://doi.org/10.1007/S10694-021-01108-Y/FIGURES/19 (2021).


    Google Scholar
     

  • Ye, Z., Hsu, S. C. & Wei, H. H. Real-time prediction of structural fire responses: A finite element-based machine-learning approach. Autom. Constr. 136, 104165. https://doi.org/10.1016/J.AUTCON.2022.104165 (2022).


    Google Scholar
     

  • Environmental, H. E. & TJ of E&. Nominal moment capacity of box reinforced concrete beams exposed to fire. CiteseerH ErdemTurkish J Eng Environ Sci 2009•Citeseer 2009;33:31–44. (2009). undefined https://doi.org/10.3906/muh-0811-4

  • Erdem, H. Predicting the moment capacity of RC beams exposed to fire using ANNs. Constr. Build. Mater. 101, 30–38. https://doi.org/10.1016/J.CONBUILDMAT.2015.10.049 (2015).


    Google Scholar
     

  • Erdem, H. Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks. Adv. Eng. Softw. 41, 270–276. https://doi.org/10.1016/J.ADVENGSOFT.2009.07.006 (2010).


    Google Scholar
     

  • Ahmadi, M., Kheyroddin, A., Dalvand, A. & Kioumarsi, M. New empirical approach for determining nominal shear capacity of steel fiber reinforced concrete beams. Constr. Build. Mater. 234, 117293. https://doi.org/10.1016/J.CONBUILDMAT.2019.117293 (2020).


    Google Scholar
     

  • Fakharian, P., Rezazadeh Eidgahee, D., Akbari, M., Jahangir, H. & Ali Taeb, A. Compressive strength prediction of Hollow concrete masonry blocks using artificial intelligence algorithms. Structures 47, 1790–1802. https://doi.org/10.1016/j.istruc.2022.12.007 (2023).


    Google Scholar
     

  • Chen, L. et al. Axial compressive strength predictive models for recycled aggregate concrete filled circular steel tube columns using ANN, GEP, and MLR. J. Build. Eng. 77, 107439. https://doi.org/10.1016/j.jobe.2023.107439 (2023).


    Google Scholar
     

  • Kumarawadu, H., Weerasinghe, P. & Perera, J. S. Evaluating the performance of ensemble machine learning algorithms over traditional machine learning algorithms for predicting fire resistance in FRP strengthened concrete beams. Electron. J. Struct. Eng. 24, 47–53. https://doi.org/10.56748/ejse.24661 (2024).


    Google Scholar
     

  • Habib, A., Barakat, S., Al-Toubat, S., Junaid, M. T. & Maalej, M. Developing machine learning models for identifying the failure potential of Fire-Exposed FRP-Strengthened concrete beams. Arab. J. Sci. Eng. 2024 5011, 50:8475–8490. https://doi.org/10.1007/S13369-024-09497-2 (2024).


    Google Scholar
     

  • Ho, T. N. T., Nguyen, T. P. & Truong, G. T. Concrete spalling identification and fire resistance prediction for fired RC columns using machine Learning-Based approaches. Fire Technol. 2024 603. 60, 1823–1866. https://doi.org/10.1007/S10694-024-01550-8 (2024).


    Google Scholar
     

  • Hao, Z. H., Feng, P., Zhang, S. & Zhai, Y. Machine learning for predicting fiber-reinforced polymer durability: A critical review and future directions. Compos. Part. B Eng. 303, 112587. https://doi.org/10.1016/J.COMPOSITESB.2025.112587 (2025).


    Google Scholar
     

  • ISO834. Fire resistance tests elements of building construction Part 1–9: International Standards Organisation, Geneva; (1975).

  • Eurocode2. Design of Concrete Structures ENV 1992 Part 1–2: General Rules Structural Fire Design (European Committee For Standardization, Brussels, 1995).

  • Incropera, F., DeWitt, D., Bergman, T. & Lavine, A. Fundamentals of heat and mass transfer. (1996).

  • Kovačević, M., Hadzima-Nyarko, M., Petronijević, P., Vasiljević, T. & Radomirović, M. Comparative Analysis of Machine Learning Models for Predicting Interfacial Bond Strength of Fiber-Reinforced Polymer-Concrete Comput. ;13:17. https://doi.org/10.3390/COMPUTATION13010017/S1. (2025).

  • Snoek, J., Larochelle, H. & Adams, R. P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. ;25. (2012).

  • Wu, J. et al. Hyperparameter optimization for machine learning models based on bayesian optimization. J. Electron. Sci. Technol. 17, 26–40. https://doi.org/10.11989/JEST.1674-862X.80904120 (2019).


    Google Scholar
     

  • Isleem, H. F. et al. Analysis of flow dynamics and energy dissipation in piano key and labyrinth weirs using computational fluid dynamics. Comput. Fluid Dyn. – Anal. Simulations Appl. [Working Title]. https://doi.org/10.5772/INTECHOPEN.1006332 (2024).


    Google Scholar
     

  • Eltarabily, M. G., Selim, T., Elshaarawy, M. K. & Mourad, M. H. Numerical and experimental modeling of geotextile soil reinforcement for optimizing settlement and stability of loaded slopes of irrigation canals. Environ. Earth Sci. 83, 246. https://doi.org/10.1007/s12665-024-11560-y (2024).


    Google Scholar
     

  • Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. Proc. ACM SIGKDD Int. Conf. Knowl. Discov Data Min. 13-17-Augu, 785–794. https://doi.org/10.1145/2939672.2939785/SUPPL_FILE/KDD2016_CHEN_BOOSTING_SYSTEM_01-ACM.MP4 (2016).


    Google Scholar
     

  • CAO, Y. & MIAO Q-G, LIU J-C, G. A. O. L. Advance and prospects of adaboost algorithm. Acta Autom. Sin. 39, 745–758. https://doi.org/10.1016/S1874-1029(13)60052-X (2013).


    Google Scholar
     

  • Ke, G. et al. LightGBM: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. ;30. (2017).

  • Liang, W., Luo, S., Zhao, G. & Wu, H. Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM Algorithms. Math 2020. Page 8, 8:765. https://doi.org/10.3390/MATH8050765 (765 2020).

  • Nouri, Y., Ghanizadeh, A. R., Safi Jahanshahi, F. & Fakharian, P. Data-driven prediction of axial compression capacity of GFRP-reinforced concrete column using soft computing methods. J. Build. Eng. 101, 111831. https://doi.org/10.1016/j.jobe.2025.111831 (2025).


    Google Scholar
     

  • Fakharian, P., Bazrgary, R., Ghorbani, A., Tavakoli, D. & Nouri, Y. Compressive strength prediction of green concrete with recycled Glass-Fiber-Reinforced polymers using a machine learning approach. Polym. (Basel). 17. https://doi.org/10.3390/polym17202731 (2025).

  • Nouri, Y., Ghanbari, M. A. & Fakharian, P. Flexural behavior of hybrid GFRP-steel reinforced concrete beam: experimental and explainable artificial intelligence. Eng. Struct. 345, 121565. https://doi.org/10.1016/j.engstruct.2025.121565 (2025).


    Google Scholar
     

  • Ziaie, A., Mehdizadeh, B., Safi Jahanshahi, F., Ahmadi, N. & Ghanizadeh, A. R. Prediction of Liquefaction-Induced lateral displacements using hybrid GBRT and EOA. J. Soft Comput. Civ. Eng. 2026;10: (2061). https://doi.org/10.22115/scce.2025.2061

  • Fakharian, P. et al. Bond strength prediction of externally bonded reinforcement on groove method (EBROG) using MARS-POA. Compos. Struct. 349–350. https://doi.org/10.1016/j.compstruct.2024.118532 (2024).

  • Massey, F. J. Jr The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951).


    Google Scholar
     

  • Anderson, T. W. & Darling, D. A. A test of goodness of fit. J. Am. Stat. Assoc. 49, 765–769 (1954).


    Google Scholar
     

  • Pettitt, A. N. Testing the normality of several independent samples using the Anderson-Darling statistic. Appl. Stat. 26, 156. https://doi.org/10.2307/2347023 (1977).


    Google Scholar
     

  • Steinskog, D. J., Tjøstheim, D. B. & Kvamstø, N. G. A cautionary note on the use of the Kolmogorov–Smirnov test for normality. Mon Weather Rev. 135, 1151–1157. https://doi.org/10.1175/MWR3326.1 (2007).


    Google Scholar
     

  • Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst., vol. – Decem, Neural information processing systems foundation; 2017, 4766–75. (2017).

  • Shabani Ammari, A. et al. Flexural strengthening of corroded steel beams with CFRP by using the end anchorage: Experimental, numerical, and machine learning methods. Case Stud. Constr. Mater. 23, e04966. https://doi.org/10.1016/j.cscm.2025.e04966 (2025).


    Google Scholar
     

  • Wang, H., Liang, Q., Hancock, J. T. & Khoshgoftaar, T. M. Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods. J. Big Data. 11, 44. https://doi.org/10.1186/s40537-024-00905-w (2024).


    Google Scholar
     



  • Source link