Skip to content
A4 civilengineering
  • Home
  • About Us
  • Education
  • Community
  • Thought
  • Ongoing Happenings
  • Contact Us
Menu Close

Blog

  1. Home>
  2. Sensors>
  3. Stretchable Pressure Sensor Could Lead to Better Robotics, Prosthetics
Stretchable Pressure Sensor Could Lead to Better Robotics, Prosthetics
The new pressure sensor can be stretched up to 50 percent while maintaining almost the same sensing performance

In the future, soft robotic hands with advanced sensors could help diagnose and care for patients or act as more lifelike prostheses.

But one roadblock to encoding soft robotic hands with human-like sensing capabilities and dexterity has been the stretchability of pressure sensors. Although pressure sensors—needed for a robotic hand to grasp and pick up an object, or even take a pulse from a wrist—have been able to bend or stretch, their performance has been significantly affected by such movement.

Researchers at the Pritzker School of Molecular Engineering (PME) at the University of Chicago have found a way to address this issue and have designed a new pressure sensor that can be stretched up to 50 percent while maintaining almost the same sensing performance. It is also sensitive enough to sense the pressure of a small piece of paper, and it can respond to pressures almost instantaneously.

The researchers attached the sensor to a soft robotic hand, which was then able to use it to take the pulse waveforms—the dynamic pressure pattern within each beating of pulse—from a human wrist. The results were published in Science Advances, and the researchers have filed a patent for the technology.

“This the first pressure sensor that can stretch and still maintain its high sensitivity and quick response rate,” said assistant professor Sihong Wang, who led the research. “It could potentially be important technology, both in the research community and in the healthcare industry.”

A special double-layer design
Creating pressure sensors that can work on soft robotics has been difficult, since the stretched skin of soft robotics could introduce lateral strain to the pressure sensor. This introduces another mechanical signal into the system, making it difficult to decouple pressure and strain into separate measurements.

Wang’s graduate student, Qi Su, led the development of a sensor that works through a new electrical double layer design. The outside layers are made up of stretchy, conductive nanoparticle paste and elastomer. Inside stand tiny micropyramids. When pressure is placed on the sensor, the micropyramids compress slightly, connecting with an electrode, which sends a signal about the pressure level.

The elastomer material makes the sensor inherently stretchy, but the researchers increased the stiffness at the bottom of each micropyramid, so even when the sensor is stretched and deformed, the micropyramids stay intact. In fact, even when the material is stretched up to 50 percent—the level of stretching generally needed on a human body—the sensor retained its high level of sensitivity. The sensor also proved to be robust, not losing any of its sensing capabilities after being stretched 500 times.

Incorporating sensors into robotics
The applications for a stretchable pressure sensor are wide-ranging, but Wang points to the recent COVID-19 pandemic as proof for their immediate need. Many people stuck at home were relegated to talking with their doctors through virtual telemedicine and couldn’t get the diagnostic or therapeutic care that they needed.

In the future, a robot could provide such a service. Wang and his team tested their sensor on a soft robotic hand, which was able to use the pressure sensor to grasp a human wrist and record a pulse waveform. Such a robot could also use the pressure sensor to provide physical therapy to patients by putting controlled massage pressure onto body parts.

The sensor could also act as an electronic skin on a prosthesis. For example, a soft robotic prosthetic hand could ultimately sense the pressure its fingers feel when picking up an object.

Wang and his team are working to add multiple sensors to the robot hand—expanding them to multiple fingers and adding new sorts of sensors that can feel texture—and are beginning collaborations to design future prosthetic applications.
Read More
www.labmanager.com

Read more articles

Previous PostAI-enabled sensors for parts machining set to improve quality and cut costs
Next PostEmbedded Sensors and Intelligence on the New Edge

You Might Also Like

Space Force eyes lower-cost sensors to monitor geostationary orbit

Space Force eyes lower-cost sensors to monitor geostationary orbit

January 1, 2022
Sky Surveillance with Multi-Sensor Tracking Technology

Sky Surveillance with Multi-Sensor Tracking Technology

January 14, 2022
University team to install cutting-edge technology on Huron Church to improve traffic safety near bridge

University team to install cutting-edge technology on Huron Church to improve traffic safety near bridge

August 25, 2021

Archives

  • October 2025
  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021

Categories

  • 3D Printing
  • Air Quality
  • Architecture
  • Automation
  • BIM
  • Civil Software
  • Computer Vision
  • Constrcution Site
  • Digital Twin
  • Disaster
  • Earthquake
  • Edu Resource
  • Environmental
  • FreeCourse
  • Geotechnical Engineering
  • GIS
  • Industry News
  • Intelligent Transportation System
  • IOT
  • Market Analysis
  • Project Management
  • Remote Sensing
  • Sensors
  • Smart City
  • Smart Home
  • Smart Home/Building
  • Smart Materials
  • Structural Engineering
  • Structural Health Monitoring
  • Transportation
  • Uncategorized
  • Urban Planning

Recent Posts

  • Seattle DJC.com local business news and data – Architecture & Engineering
  • 1 Introduction
  • How AI is redefining a cyber engineer’s day
  • Hong Kong develops AI-driven landslip warning system with more than 90% accuracy
  • Nationwide Backlash Brewing Against Big Tech’s Energy-Devouring AI Data Centers
A4 civilengineering
©2021 Privacy policy
  • Home
  • About Us
  • Education
  • Community
  • Thought
  • Ongoing Happenings
  • Contact Us

Enjoying the contents?

Subscribe to our weekly newsletter