Skip to content
A4 civilengineering
  • Home
  • About Us
  • Education
  • Community
  • Thought
  • Ongoing Happenings
  • Contact Us
Menu Close

Blog

  1. Home>
  2. Structural Health Monitoring>
  3. New method aids water prospecting and dam security
New method aids water prospecting and dam security
Scientists from Skoltech and St. Petersburg State University have proposed a mathematical method for interpreting data on underground water flows. The new technique is more efficient and provides more accuracy in imaging fluids for planning construction works, inspecting dams for integrity, and locating water reservoirs for agriculture and private consumption in dry areas. The study came out in IEEE Transactions on Geoscience and Remote Sensing.

Detecting subsurface water flows is important for construction safety, dam monitoring, and groundwater prospecting. Underground fluid flows constitute a hazard for the foundation elements of buildings and subway systems, as well as an early warning of an impending dam breach. In dry climates, such as in Spain, Israel, Australia, or the south of Russia, knowing where water flows under the ground offers a way to tap into this resource for agricultural, industrial, and private needs.

The past decade has seen the rise of a new approach to underground water flow imaging: self-potential mapping. The underlying premise is that as water seeps through porous rock, it generates electrical potential, which indicates its presence.

The main challenge with self-potential mapping is that while researchers can reliably pick up these electrical signals, making sense of them and localizing actual underground flows has proved tricky. Until now, no satisfactory mathematical method has been available for processing large amounts of self-potential data for areas with rough terrain.

In a recent paper in IEEE TGRS, a Russian research team from Skoltech and St. Petersburg State proposed such a method. It is capable of rapidly processing many measurements and precisely accounting for the complex geometry of the studied domain. The latter is particularly important for identifying dam breaches, because dam geometry strongly affects the electrical potential.

“The ultimate result is that the method greatly improves the quality of geophysical interpretation,” the study’s first author, Mikhail Malovichko of Skoltech, commented. “Technically speaking, we are increasing the accuracy of the inverse problem. Considering the improvement in subsurface imaging, we believe this approach has great potential within the industry.”

*****

Skoltech is a private international university located in Russia. Established in 2011 in collaboration with the Massachusetts Institute of Technology (MIT), Skoltech is cultivating a new generation of leaders in the fields of science, technology, and business, conducting research in breakthrough fields, and promoting technological innovation with the goal of solving critical problems that face Russia and the world. Skoltech is focusing on six priority areas: artificial intelligence and communications, life sciences and health, cutting-edge engineering and advanced materials, energy efficiency and ESG, photonics and quantum technologies, advanced studies. Website: https://www.skoltech.ru/.
Read More
www.eurekalert.org

Read more articles

Previous PostKeynote Preview: How can remote sensing and analytic technologies be applied to understand climate challenges?
Next PostSen. Dodd Introduces Remote Water Monitoring Bill

You Might Also Like

Plants Buy Us Time to Slow Climate Change – But Not Enough to Stop It

Plants Buy Us Time to Slow Climate Change – But Not Enough to Stop It

January 6, 2022
Geospatial Data as a Vital Tool for Protecting Planet Earth

Geospatial Data as a Vital Tool for Protecting Planet Earth

January 19, 2022
NASA Scientist Christian Braneon Receives AXA Award for Climate Science

NASA Scientist Christian Braneon Receives AXA Award for Climate Science

August 14, 2021

Archives

  • October 2025
  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021

Categories

  • 3D Printing
  • Air Quality
  • Architecture
  • Automation
  • BIM
  • Civil Software
  • Computer Vision
  • Constrcution Site
  • Digital Twin
  • Disaster
  • Earthquake
  • Edu Resource
  • Environmental
  • FreeCourse
  • Geotechnical Engineering
  • GIS
  • Industry News
  • Intelligent Transportation System
  • IOT
  • Market Analysis
  • Project Management
  • Remote Sensing
  • Sensors
  • Smart City
  • Smart Home
  • Smart Home/Building
  • Smart Materials
  • Structural Engineering
  • Structural Health Monitoring
  • Transportation
  • Uncategorized
  • Urban Planning

Recent Posts

  • Nationwide Backlash Brewing Against Big Tech’s Energy-Devouring AI Data Centers
  • AI-powered landslip warning system with 90 percent accuracy to launch in 2026
  • NOXIFER has obtained two new European Technical Assessments
  • SEPTEMBER PUBLIC TALK: AI, BIG DATA, AND THEIR APPLICATIONS | Trường Đại học Quốc Tế
  • Why digital twins are crucial to the future of construction
A4 civilengineering
©2021 Privacy policy
  • Home
  • About Us
  • Education
  • Community
  • Thought
  • Ongoing Happenings
  • Contact Us

Enjoying the contents?

Subscribe to our weekly newsletter