Clearing the Air: The Role of Drones in Methane Emission Detection and Mitigation
Methane, as a greenhouse gas (GHG), traps heat in the atmosphere and warms the planet. Capable of staying airborne for about 12 years, it accelerates climate change and acts as a precursor to health-harmful ozone at ground level.
The United States is one of the world’s top six methane emitters. More than 300,000 U.S. oil and gas wells and other sites alone emit methane. Then there’s pipelines. Energy facilities and related operations account for 30% of the country’s methane emissions.
As oil and natural gas companies face increasing environmental and social governance (ESG) pressure to be more environmentally conscious in their operations, many have turned to drones for their comprehensive methane solution.
A WIDE PLUME OF LEGAL REQUIREMENTS
In 1970, Congress passed the Clean Air Act (CAA)(42 U.S. Code Chapter 85). The legislation charged the Environmental Protection Agency (EPA) to establish national ambient air quality standards for common pollutants. Later amendments in 1977 and 1990 expanded the CAA’s coverage to the stratospheric ozone layer.
The CAA mandated the EPA to set Oil and Natural Gas Sector New Source Performance Standards (NSPS) for industrial categories that cause, or significantly contribute to, air pollution. In response, in 2016, the EPA published the national “Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced after September 18, 2015” (40 CFR Part 60, Subpart OOOOa), commonly referred to as OOOOa (or “QuadOa”).
For the oil and natural gas industry, OOOOa establishes emission control standards for me-thane production, processing, transmission and storage for sources constructed, modified or reconstructed after that 2015 date. It also requires said companies to submit annual compliance reports (via the Compliance and Emissions Data Reporting Interface (CEDRI)), as well as to maintain certain records.
This broad-sweeping regulation applies to various facilities, including well completions (for hydraulic fracturing and refracturing), wet seal centrifugal compressors, reciprocating compressors, natural gas-driven pumps, storage vessels, collections of fugitive emissions components at well sites and compression stations, equipment leaks at natural gas processing plants and sweetening units at natural gas processing plants.
The regulation (and several others) requires certain facilities to implement a Leak Detection and Quantification (LDAR) program to identify leaks through consistent performance testing, monitor-ing and reporting. According to the EPA, LDAR programs could reduce equipment leak emissions by 63% in some cases.
A few states also have their own methane regulations. Colorado’s 2014 directive preceded the EPA’s NSPS; it has a broader scope, covering all oil and gas wells, not just those created after 2015. Since the state regulation’s inception, the natural gas industry has performed millions of LDAR inspections.
Failure to comply with these rules can cost companies big. Enforcement actions can range from hefty civil finds to criminal prosecution. For example, in May 2020, Sprague Resources LP, the owner/operator of several New England petroleum storage and distribution facilities, paid $350,000 in civil penalties to the EPA and state authorities for “alleged violations” concerning oil storage tank emissions.
Not long after the Sprague settlement, in September 2020, the Trump-era EPA released short-lived rules to roll back methane and other emissions standards (see legal analysis on these changes at Harvard’s Environmental & Energy Law Program).
In a complete reversal, in November 2021, the Biden EPA proposed new regulations to expand methane emissions controls for new oil and gas facilities, with a goal of reducing these emissions by approximately 75%. These regs will also require states to develop methane reduction plans for the first time.
Simultaneous with this EPA rule-making, the administration unveiled its U.S. Methane Emissions Reduction Action Plan. Consistent with a Global Methane Pledge to reduce the world’s methane emissions by 30% from 2020 levels by 2030, it doubles down on emissions standards and promoted innovation and new technologies to assist with compliance.
The United States is one of the world’s top six methane emitters. More than 300,000 U.S. oil and gas wells and other sites alone emit methane. Then there’s pipelines. Energy facilities and related operations account for 30% of the country’s methane emissions.
As oil and natural gas companies face increasing environmental and social governance (ESG) pressure to be more environmentally conscious in their operations, many have turned to drones for their comprehensive methane solution.
A WIDE PLUME OF LEGAL REQUIREMENTS
In 1970, Congress passed the Clean Air Act (CAA)(42 U.S. Code Chapter 85). The legislation charged the Environmental Protection Agency (EPA) to establish national ambient air quality standards for common pollutants. Later amendments in 1977 and 1990 expanded the CAA’s coverage to the stratospheric ozone layer.
The CAA mandated the EPA to set Oil and Natural Gas Sector New Source Performance Standards (NSPS) for industrial categories that cause, or significantly contribute to, air pollution. In response, in 2016, the EPA published the national “Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced after September 18, 2015” (40 CFR Part 60, Subpart OOOOa), commonly referred to as OOOOa (or “QuadOa”).
For the oil and natural gas industry, OOOOa establishes emission control standards for me-thane production, processing, transmission and storage for sources constructed, modified or reconstructed after that 2015 date. It also requires said companies to submit annual compliance reports (via the Compliance and Emissions Data Reporting Interface (CEDRI)), as well as to maintain certain records.
This broad-sweeping regulation applies to various facilities, including well completions (for hydraulic fracturing and refracturing), wet seal centrifugal compressors, reciprocating compressors, natural gas-driven pumps, storage vessels, collections of fugitive emissions components at well sites and compression stations, equipment leaks at natural gas processing plants and sweetening units at natural gas processing plants.
The regulation (and several others) requires certain facilities to implement a Leak Detection and Quantification (LDAR) program to identify leaks through consistent performance testing, monitor-ing and reporting. According to the EPA, LDAR programs could reduce equipment leak emissions by 63% in some cases.
A few states also have their own methane regulations. Colorado’s 2014 directive preceded the EPA’s NSPS; it has a broader scope, covering all oil and gas wells, not just those created after 2015. Since the state regulation’s inception, the natural gas industry has performed millions of LDAR inspections.
Failure to comply with these rules can cost companies big. Enforcement actions can range from hefty civil finds to criminal prosecution. For example, in May 2020, Sprague Resources LP, the owner/operator of several New England petroleum storage and distribution facilities, paid $350,000 in civil penalties to the EPA and state authorities for “alleged violations” concerning oil storage tank emissions.
Not long after the Sprague settlement, in September 2020, the Trump-era EPA released short-lived rules to roll back methane and other emissions standards (see legal analysis on these changes at Harvard’s Environmental & Energy Law Program).
In a complete reversal, in November 2021, the Biden EPA proposed new regulations to expand methane emissions controls for new oil and gas facilities, with a goal of reducing these emissions by approximately 75%. These regs will also require states to develop methane reduction plans for the first time.
Simultaneous with this EPA rule-making, the administration unveiled its U.S. Methane Emissions Reduction Action Plan. Consistent with a Global Methane Pledge to reduce the world’s methane emissions by 30% from 2020 levels by 2030, it doubles down on emissions standards and promoted innovation and new technologies to assist with compliance.
insideunmannedsystems.com